移动式叶绿素荧光成像系统

移动式叶绿素荧光成像系统

参考价: 面议

具体成交价以合同协议为准
2023-05-22 12:07:36
299
产品属性
关闭
慧诺瑞德(北京)科技有限公司

慧诺瑞德(北京)科技有限公司

免费会员
收藏

组合推荐相似产品

产品简介

移动式叶绿素荧光成像系统PlantExplorerXS是由慧诺瑞德和荷兰PhenoVation公司联合推出的专门针对大田、温室、气候室和实验室场景的可以移动的叶绿素荧光测量系统

详细介绍

 

移动式叶绿素荧光成像系统PlantExplorerXS是由慧诺瑞德和荷兰PhenoVation公司联合推出的专门针对大田、温室、气候室和实验室场景的可以移动的叶绿素荧光测量系统。配备移动式升降平台车、内置电脑的叶绿素荧光成像单元、移动电源、显示单元和操作单元。叶绿素荧光成像单元可以升降和旋转,既可以测量不同高度的植物冠层,也可以倾斜或水平角度测量穗(麦穗、稻穗、谷穗等)、荚果(大豆、油菜等)、果实(番茄、黄瓜、葡萄、柑橘等)、叶片或冠层。

 

该系统成像面积为18x18cm,具备500万像素高清成像,同时具备“调制”和“非调制”叶绿素荧光成像测量功能,既可以测量光合生理,也可以测量形态结构,同时配备功能强大的控制和分析软件,且可以对大量数据进行批处理分析。该系统,无论室内还是大田,都是进行植物表型、光合生理、植物抗逆、植物病理、育种、功能基因组、突变株筛选、种子生理/病理等研究的利器。
 

 

功能特性

  • 大田、温室、气候室、实验室进行移动式测量
  • 叶绿素荧光成像单元可以升降、旋转
  • 叶绿素荧光成像和表型分析同步测量
  • 同时具备调制和非调制叶绿素荧光测量功能
  • 出色的高清相机(500万像素)、高信噪比成像
  • 16位图像格式,的成像质量
  • 光源、相机、滤光片、电脑一体化设计
  • 无可见镜头畸变,无需图像校正
  • 成像范围18 x 18cm
  • 多种测量protocol可选,允许用户编辑设定自己的protocol,包括但不限于Fv/Fm测量、标准诱导曲线测量、暗弛豫测量、OJIP快速诱导动力学测量等等。
  • 可进行功能强大的延时成像测量
  • 自动计算荧光参数和表型参数
  • 具备图像数据批处理分析功能
  • 提供多种功能强大的图像分割功能
  • 对所有图像数据均提供数据分级(用户自定义范围)并进行图像化显示,并允许对分级筛选后的数据叠加到可见光图像上展示
  • 图像背景、伪彩色标尺均有多种选择
  • 允许用户自定义多种ROI(性状、数目、分布等)并对ROI的数据自动分析
  • 嵌入式电脑进行精确的成像、时间控制、光强控制和数据存储
  • 功能强大的控制和分析软件
  • 特别适合突变株筛选、育种材料/组合筛选、抗逆研究、病理研究、种子研究、果实研究、功能基因组学等

主要技术参数

  • 基本组成:移动式升降平台、叶绿素荧光成像单元、移动电源、显示单元、操作单元等
  • 叶绿素荧光成像方式:“调制”测量 +“费调制”测量
  • 调制测量光:蓝色LED, 450nm,半峰全宽20nm,光强4000 umol m-2 s-1 ,独立触发
  • Kautsky测量光:蓝色LED, 450nm,半峰全宽20nm,光强4000 umol m-2 s-1
  • 饱和脉冲:蓝色LED, 450nm,半峰全宽20nm,光强4000 umol m-2 s-1,独立触发
  • 时间分辨动力学光化光:红光LED,660nm,光强800 umol m-2 s-1
  • 远红光:LED,735nm,半峰全宽20nm,35W
  • 相机:CMOS传感器,500万像素
  • 颜色深度:12bit
  • 标准帧率:37.5 FPS
  • 图像格式:16bit
  • 相机光谱范围:400~1000 nm
  • 接口:3个USB3.0,1个以太网口,1个HDMI接口
  • 嵌入式电脑:4核处理器,8G内存,256G固态硬盘
  • 成像面积:18cm x 18cm
  • 升降高度:0-1200mm(高度可定制)
  • 旋转角度:-90° ~ 90°
  • 显示单元:15.6寸触摸显示屏
  • 供电:35万mAh移动电源,额定容量1260Wh,峰值功耗1000W,待机功耗35W
  • 系统尺寸:600mm x 720mm x 2000mm(长x宽x高)

 

 

测量参数

  • 调制叶绿素荧光参数:Fo、Fm、Fv/Fm、dFq/Fm=DF/Fm、Fs’、Fm’、Fo’、Fq’/Fm’=Fv’/Fm’、rETR、NPQ、Y(NO)、Y(NPQ)、qN、qP、qL、1-qP和1-qL等;
  • 非调制叶绿素荧光参数:Fo、Fi、Fm、1-Fi/Fm、IC-Area、IC-Area/Fv、PI、Rfd、dRfd、RfdFm和RfdFt等;
  • 表型参数:(植物、种子、果实的)数目、轮廓面积、长度、宽度、凸包点数、凸包面积、凸包面积/轮廓面积、最小外接圆(质心、半径、面积)、最小外接矩形(长、宽、面积、角度、alpha)和骨架等。

 

 

 

 

 

利用PhenoVation叶绿素荧光成像技术发表的部分文献

  1. Casto A L, Schuhl H, Schneider D, et al. (2021) Analyzing chlorophyll fluorescence images in PlantCV. Earth and Space Science Open Archive:5. https://doi.org/10.1002/essoar..2
  2. Wang L, Liu F, Hao X, et al. (2021) Identification of the QTL-allele System Underlying Two High-Throughput Physiological Traits in the Chinese Soybean Germplasm Population. Frontiers in Genetics, https://doi.org/10.3389/fgene.2021.600444
  3. Farooq M, van Dijk A D J, Nijveen H, et al. (2021) Prior Biological Knowledge Improves Genomic Prediction of Growth-Related Traits in Arabidopsis thaliana. Frontiers in Genetics, 11:609117. doi: 10.3389/fgene.2020.609117
  4. He Y, Li Y, Yao Y et al. (2021) Overexpression of watermelon m6A methyltransferase ClMTB enhances drought tolerance in tobacco by mitigating oxidative stress and photosynthesis inhibition and modulating stress-responsive gene expression. Plant Physiology and Biochemistry, 168: 340-352.
  5. Wang W, Liu D, Qin M et al. (2021) Effects of Supplemental Lighting on Potassium Transport and Fruit Coloring of Tomatoes Grown in Hydroponics. International Journal of Molecular Sciences, 22(5): 2687 https://doi.org/10.3390/ijms
  6. Singh R R, Pajar J A, Audenaert K, et al. (2021) Induced Resistance by Ascorbate Oxidation Involves Potentiating of the Phenylpropanoid Pathway and Improved Rice Tolerance to Parasitic Nematodes. Frontiers in Plant Science, 12:713870. doi: 10.3389/fpls.2021.713870
  7. Vidak M, Lazarevic B, Petek M, et al. (2021) Multispectral Assessment of Sweet Pepper (Capsicum annuum L.) Fruit Quality Affected by Calcite Nanoparticles. Biomolecules, 11(6), 832; https://doi.org/10.3390/biom
  8. Lazarevic B, Satovic Z, Nimac A, et al. (2021) Application of Phenotyping Methods in Detection of Drought and Salinity Stress in Basil (Ocimum basilicum L.). Frontiers in Plant Science, 12:629441. doi: 10.3389/fpls.2021.629441
  9. Romero-Perez A, Ameye M, Audenaert K, et al. (2021) Overexpression of F-Box Nictaba Promotes Defense and Anthocyanin Accumulation in Arabidopsis thaliana After Pseudomonas syringae Infection. Frontiers in Plant Science, 12:692606. doi: 10.3389/fpls.2021.692606
  10. Meng L, Mestdagh H, Ameye M, et al. (2021) Phenotypic variation of Botrytis cinerea Isolates is influenced by spectral light quality. Frontiers in Plant Science, 11:1233. doi: 10.3389/fpls.2020.01233
  11. De Zutter N, Ameye M, Debode J, et al. (2021) Shifts in the rhizobiome during consecutive in planta enrichment for phosphate-solubilizing bacteria differentially affect maize P status. Microbial Biotechnology, doi:10.1111/1751-7915.13824
  12. Stambuk P, Sikuten I, Preiner D, et al. (2021) Screening of Croatian Native Grapevine Varieties for Susceptibility to Plasmopara viticola Using Leaf Disc Bioassay, Chlorophyll Fluorescence, and Multispectral Imaging. Plants, 10, 661. https://doi.org/10.3390/plants
  13. Tan J, de Zutter N, de Saeger S, et al. (2021) Presence of the Weakly Pathogenic Fusarium poae in the Fusarium Head Blight Disease Complex Hampers Biocontrol and Chemical Control of the Virulent Fusarium graminearum Pathogen. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2021.641890
  14. Flood P, Theeuwen T, Schneeberger K, Keizer P, Kruijer W, et al. (2020) Reciprocal cybrids reveal how organellar genomes affect plant phenotypes. Nature Plants, 10.1038/s41477-019-0575-9ff. ffhal-v2f
  15. Velivelli S L S, Czymmek K J, Li H, Shaw J B, Buchko G W, Shah D M. (2020) Antifungal symbiotic peptide NCR044 exhibits unique structure and multifaceted mechanisms of action that confer plant protection. PNAS, DOI: 10.1073/pnas.2003526117
  16. Bhatnagar N, Pandey S. (2020) Heterotrimeric G-Protein Interactions Are Conserved Despite Regulatory Element Loss in Some Plants. Plant Physiology, DOI: https://doi.org/10.1104/pp.20.01309
  17. Venneman J, Vandermeersch L, Walgraeve C et al. (2020) Respiratory CO2 Combined With a Blend of Volatiles Emitted by Endophytic Serendipita Strains Strongly Stimulate Growth of Arabidopsis Implicating Auxin and Cytokinin Signaling. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2020.544435
  18. Tan J, Ameye M, Landschoot S et al. (2020) At the scene of the crime: New insights into the role of weakly pathogenic members of the fusarium head blight disease complex. Molecular Plant Pathology, DOI: 10.1111/mpp.12996
  19. Prinzenberg A E, Campos-Dominguez L, Kruijer W, Harbinson J, Aarts M G M. (2020) Natural variation of photosynthetic efficiency in Arabidopsis thaliana accessions under low temperature conditions. Plant Cell & Environment, 1–14. https://doi.org/10.1111/pce.13811
  20. Zhang H, Chen Y, Niu Y, Zhang X, Zhao J, Sun L, Wang H, Xiao J, Wang X. (2020) Characterization and fine mapping of a leaf yellowing mutant in common wheat. Plant Growth Regulation, https://doi.org/10.1007/s10725-020-00633-0
  21. Jin X, Zarco-Tejada P, Schmidhalter U, Reynolds M P et al. (2020) High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms. IEEE Geoscience and Remote Sensing Magazine, DOI: 10.1109/MGRS.2020.2998816
  22. Sheng X-G, Branca F, Zhao Z-Q et al. (2020) Identification of Black Rot Resistance in a Wild Brassica Species and Its Potential Transferability to Cauliflower. Argonomy, 10: 1400. doi:10.3390/agronomy
  23. Pennisi G, Blasioli S, Cellini A, Maia L, Crepaldi A, Braschi I, Gianquinto G. (2019). Unraveling the Role of Red:Blue LED Lights on Resource Use Efficiency and Nutritional Properties of Indoor Grown Sweet Basil. Frontiers in plant science, 10, 305. doi:10.3389/fpls.2019.00305
  24. Pennisi G, Orsini F, Blasioli S, Cellini A et al. (2019) Resource use efficiency of indoor lettuce (Lactuca sativa L.) c*tion as affected by red:blue ratio provided by LED lighting. Scientific Reports, 9, 14127
  25. Van Es S W, van der Auweraert E B, Silveira S R, Angenent G C, van Dijk A D J, Immink R G H. (2019) Comprehensive phenotyping reveals interactions and functions of Arabidopsis thaliana TCP genes in yield determination. The Plant Journal, doi: 10.1111/tpj.14326
  26. Köhl J, Goossen-van de Geijn H, Groenenboom-de Haas L, et al. (2019) Stepwise screening of candidate antagonists for biological control of Blumeria graminis f. sp. tritici. Biological Control, 136: 104008
  27. Mohd Nadzir M M, Vieira Lelis F M, Thapa B, Ali A, Visser R G F, van Heusden A W, van der Wolf J M. (2019) Development of an in vitro protocol to screen Clavibacter michiganensis subsp. michiganensis pathogenicity in different Solanum species. Plant Phathology, 68(1): 42-48
  28. Sall K, Dekkers B J W, Nonogaki M, Katsuragawa Y, Koyari R, Hendrix D, Willems L A J, Bentsink L, Nonogaki H. (2019) DELAY OF GERMINATION  1LIKE  4 acts as an inducer of seed reserve accumulation. The Plant Journal, 100: 7-19.
  29. Li H, Velivelli S L S, Shah D M. (2019) Antifungal Potency and Modes of Action of a Novel Olive Tree Defensin Against Closely Related Ascomycete Fungal Pathogens. Molecular Plant-Microbe Interactions. 32(12): 1646-1664.
  30. Prinzenberg A E, Viquez-Zamora M, Harbinson J, Lindhout P, van Heusden S. (2018) Chlorophyll fluorescence imaging reveals genetic variationand loci for a photosynthetic trait in diploid potato. Physiologia Plantarum, 164: 163-175.
  31. Van Rooijen R, Harbinson J, Aarts M G M. (2018) Photosynthetic response to increased irradiance correlates to variation in transcriptional response of lipidremodeling and heatshock genes. Plant Direct, 2(7): e00069
  32. Van Bezouw R F H M, Keurentjes J J B, Harbinson J, Aarts M G. (2018) Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. Plant Journal, 97(1): 112-133.
  33. Domazakis E, Wouters D, Visser R G F, Kamoun S, Joosten M H A J, Vleeshouwers V G A A. (2018) The ELR-SOBIR1 Complex Functions as a Two-Component Receptor-Like Kinase to Mount Defense Against Phytophthora infestans. Molecular Plant-Microbe Interactions, 31(8): 795-802.
  34. Bazakos C, Hanemian M, Trontin C, Jimenez-Gomez J M, Loudet O. (2017) New Strategies and Tools in Quantitative Genetics: How to Go from the Phenotype to the Genotype. Annual Review of Plant Biology, 68:435-455
  35. Van Rooijen R, Kruijer W, Boesten R, van Eeuwijk F A, Harbinson J, Aarts M G M. (2017) Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana. Nature Communications, 8: 1421
  36. Flood P J, Kruijer W, Schnabel S K, van der Schoor R, Jalink H, Snel J F H, Harbinson J, Aarts M G M. (2016) Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods, 12: 14. https://doi.org/10.1186/s13007-016-0113-y
  37. Mancarella S, Orsini F, van Oosten M J, SAnoubar R, Stanghellini C, Kondo S, Gianquinto G, Maggio A. (2016) Leaf sodium accumulation facilitates salt stress adaptation and preserves photosystem functionality in salt stressed Ocimum basilicum. Environmental and Experimental Botany, 130: 162-173.
  38. Virlet N, Sabermanesh K, Sadeghi-Tehran P, Hawkesford M J. (2016) Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring. Functional Plant Biology, 44(1): 143-153.
  39. Gorbe Sanchez E, Heuvelink E, de Gelder A, Stanghellini C. (2015) New Non-invasive Tools for Early Plant Stress Detection. Procedia Environmental Sciences, 29: 249-250.
  40. Kastelein P, Krijger M, Czajkowski R, van der Zouwen P S, van der Schoor R, Jalink H, van der Wolf J M. (2014) Development of Xanthomonas fragariae populations and disease progression in strawberry plants after sprayinoculation of leaves. Plant Pathology, 63(2): 255-263.
  41. Harbinson J, Prinzenberg A E, Kruijer W, Aarts M G M. (2012) High throughput screening with chlorophyll fluorescence imaging and its use in crop improvement. Current Opinion in Biotechnology, 23:221
上一篇:高智能食品病害肉挥发性盐基氮快速分析仪快速分析食品病害肉挥发性盐基氮 下一篇:多参数食品药品分析系统检验化验室设备清单——云唐科技一站式全套配置
热线电话 在线询价
提示

请选择您要拨打的电话:

温馨提示

该企业已关闭在线交流功能