车辆检测仪检测技术剖析
时间:2015-08-13 阅读:2873
1.磁频车辆检测器
磁频车辆检测器是基于电磁感应原理的车辆检测器,它有感应线圈检测器、磁性检测器、地磁检测器、微型线圈检测器和磁成像检测器等几种类型。
2.1感应线圈检测器
感应线圈车辆检测器是目前国内外使用的车辆检测装置。这种检测器是由埋设在路面下的线圈传感器、信号检测处理单元(包括检测信号放大单元、数据处理单元和通信接口)及馈线。当电流有车辆通过。感应线圈检测器具有成本低、安装方便、灵敏度高、受气候影响的优点,但在实际使用中,因道路施工、路面变形等因素使线圈的损坏率较高,更换安装和维护时要进入公路主体,影响交通运输,造成成本升高,维护的工作量也很大。
2.2磁性检测器
磁性检测器也是在检测磁场变化的基础上进行工作的。这种检测器由装在护套内的小线圈和位于控制箱中的袋子放大器组成,使用时将具有高磁导率的线圈埋在路面下,当车辆靠近或者通过线圈时,穿过线圈的磁场发生变化,从而在线圈内产生感应电压,使放大器发出车辆通过的信息。该类检测器仅可检测车辆的通过且对车速有一个低限,其主要优点是设计简单且不受路表问题的影响;主要缺点是无法检测静态车辆,所以在当今交叉口检测方法的许多应用中受到限制。
2.3地磁检测器
地磁检测器是把一个具有高导磁率铁芯和线圈装在一个保护套内,里面填满非导电的防水材料,形成一根磁棒。在路上垂直于交通流的方向开一个0.2——0.6m的孔,把磁棒埋在路面下,当车辆驶过这个线圈时,通过线圈的磁通量发生变化,在线圈中产生一个电动势,这个电动势经过放大器放大后去推动继电器,发出一个车辆通过的信息。静止的车辆不会产生输出,属于通过型检测器。对于仅要求记录来往车辆数量的场合,地磁检测器比较适合,而对于其他的交通流数据的检测就显得力不从心,可以看出地磁检测器的适用面不广。
2.4微型线圈检测器
微型线圈检测器是一种型车辆传感器,在设计上类似地磁检测器,但需要和标准的感应线圈检测器的处理装置相连。微型线圈探头把磁场强度的增加转换为线圈电感量的减少,从而驱动环形线圈放大器。与地磁检测器一样,微型线圈检测器也是为了检测高灵敏度的地点而设计的。它的优点之一是每条通道可以比地磁式检测器安装更多的传感器,与地磁检测器一样,也属于通过型检测器,无法检测静态车辆。
2.5磁成像检测器
由Nu—Metrics公司研制成功的车辆检测器中的传感器技术,称为车辆磁成像技术。它测量由于车辆的出现而引起的电磁场扰动或变化,通过与已记录的不同结构车辆的磁纹相比较,不仅能将卡车和小车分离开来,而且可以测出车辆的构造、车型及速度。3波频车辆检测器波频车辆检测器是以微波、超声波和红外线等对车辆发射频检测相比,它的缺点是无法提供视觉监视能力,记录通行车辆或交通路况的可视特征。
3.雷达
3.1雷达(微波)检测器(Radar.检测器按照多普勒效应(DopplerEffect)原理工作,它由发射天线和发射接收器组成。架在门架上或路边立柱上的发射天线向路面检测区域发射微波波束,当车辆通过时,反射波束以不同的频率返回天线,检测器的发射接收器测出由于车辆运动而引起的频移,即可产生一个车辆感应输出信号,从而测定车辆的通过或存在。微波检测器的工作频率通常是24GHz或10GHz。雷达检测器具有多检测区域的特点,可检测交通量,车速,占有率等多项交通流信息,目前在交通检测方面具有很大的优势,与视位,是未来智能交通系统发展的基础。
基本类型。主动式红外检测器使用半导体红外线发生器作为传感器,自带指向测量车道的红外线光源,驶进检测区的车辆将红外光反射回检测器处,产生感应信号。被动式红外检测器其原理是利用无车辆的路面的红外线能辐射强度与路上有汽车通过时的红外线辐射强度的变化,由红外线接受器检测出来。它的典型使用是安装在信号灯柱或其他柱子上检测交叉口和行人过街区。这种检测器具有快速准确、轮廓清晰的检测能力,其缺点是工作现场的灰尘、冰雾会影响系统的正常工作。
3.2红外线检测器
红外线检测器是很,有主动式和被动式两种类型的检测器(如雷达检测器)相连以检测超速行驶的车辆。当发现超速行驶的车辆时,摄像机拍摄到该车的图像,上传到视频处理器处理后,就可以得到该车的车牌号,然后在前面的可变情报标志版上得到该车的牌照号和速度,并给该车超速警告。先进的视频车辆检测器在检测区域内借助全天候摄像机,可以记录该区域内的车辆数量、排队规模和车速等,将以上信息反馈到控制中心进行处理以确定交通信号周期和控制方式,并利用可变情报版给上游车辆提供有关阻塞和事故的建议信息,以完成交通的自适应控制,车辆诱导等功能。视频车辆检测器在现在交通控制系统中占有很重要的地
目前在交通工程中主要用于:车辆检测及分类、阻塞分类、交通流的预测,交通参数的估计、字符的辨识、驾驶员行为的模拟等众多领域。随着图像处理技术和微电子技术的发展,视频车辆检测技术的应用范围必将频检测相比,它的缺点是无法提供视觉监视能力,记录通行车辆或交通路况的可视特征。
3.3超声波检测器
超声波车辆检测器也是利用反射回波的原理制成,它是通过接收由超声波发生器发射的并经车辆反射的超声回波检测车辆的,如果超声波检测器的探头所对应的检测区域内有车辆通过或存在,探头反射出来一束超声波,就会反射回来被同一探头所接收,通过判断该信号与原反射回波信号在时间上的差异,做出检测区域内有车辆通过或存在的判断。它有脉冲型、谐振型和连续波型超声检测器三种类型。脉冲式检测器悬挂在车道的上方,向车道下方发射超声波能的脉冲,并且接受回波。当有车辆从下方通过时,从车顶反射回波而不是从路面反射回波,缩短了回波的路程,从而检测车辆的到达。振波型检测器在车道两边分别安装相向对立的发射器和接受器,从发射器发射谐振型超声波,此超声波横越车道被车道对面的接受器接受,当车辆通过时就截断了波束,从而检测出车辆。连续波型超声检测器,检测器发射一个连续的超声波能的波束射向驶近的车辆,由于多普勒效应引起来车反射频率的变化,于是就能检测车辆的存在。
4.视频车辆检测器
视频车辆检测器系统是在传统电视监视系统基础上发展起来的,是以车辆检测技术、摄像机和计算机图像处理技术为基础,大范围地对车辆施行检测和识别。视频检测,也被称为图片处理或人工视觉,是一种结合视频图像和电脑化模式识别的技术。其基本原理是:在很短时间间隔内,由半导体电荷耦合器件(CCD)摄像机连续摄得两幅图像,而这种图像本身就是数字图像,很容易对这两幅图像的全部或部分区域进行比较,有差异说明有运动物体。视频检测系统的核心是视频处理器,它由以CPU为基础的处理器、多个电路模块和用于分析视频图像的软件等设备构成,可以接收多台由路边摄像机传来的视频信号。