品牌
生产厂家厂商性质
广州市所在地
可替宁检测卡(胶体金法)
广州健仑生物科技有限公司
本司长期供应尼古丁(可替宁)检测试剂盒,其主要品牌包括美国NovaBios、广州健仑、广州创仑等进口产品,国产产品,试剂盒的实验方法是胶体金方法。
我司还提供其它进口或国产试剂盒:登革热、疟疾、流感、A链球菌、合胞病毒、腮病毒、乙脑、寨卡、黄热病、基孔肯雅热、克锥虫病、违禁品滥用、肺炎球菌、军团菌等试剂盒以及日本生研细菌分型诊断血清、德国SiFin诊断血清、丹麦SSI诊断血清等产品。
欢迎咨询
欢迎咨询
【包装规格】
1人份/袋,40人份/盒
【预期用途】
尼古丁(Nicotine)是烟草中的主要生物碱,是导致吸烟成瘾的物质动因,也是评价人体摄入烟草烟雾的常用指标。但因为尼古丁半衰期短,无法作为标志物检测,其代谢物可替宁因为半衰期长作为吸烟和戒烟的标志物。
本品采用竞争抑制法和胶体金免疫层析技术,用于快速定性检测人体唾液中的可替宁,适用于评价烟草烟雾摄入的初步筛查。
【主要组成成份】
【检验方法】
可替宁检测卡(胶体金法)
据报道,一个研究团队在华盛顿索普湖发现了一种能够产氢的盐厌氧菌属(Halanaerobium hydrogenoformans),这种细菌可以在盐和碱性条件下产生一定数量的氢,比转基因生物更具有竞争力。
该研究团队的米莱是一位研究环境下生态学的专家,原本研究的出发点并不是去寻找可以产生氢气的细菌。她zui初是对有助于清洁环境的细菌比较感兴趣,特别是在索普湖研究微生物。这类微生物可生长在温度、酸度、碱度或化工厂集中等条件下。而生活在这样的恶劣环境中,这种盐厌氧菌属依旧具有代谢能力。
科研人员通细菌会研究整个环境下微生物的生态状况,但这种特殊的细菌引起了人们注意,因此,科研人员分离到了这种细菌,并进行了更详细地研究。
研究发现,这种盐厌氧菌属在细菌pH和盐度条件下可以产生出氢和1,3-丙二醇,对于工业应用具有一定价值。其中1,3-丙二醇是一种有机化合物,可以制成工业制品,包括复合材料、胶粘剂、层压制品和涂料等,也可以制成溶剂,作为防冻剂。
而氢气可能会有更大的用途,尤其是在作为未来清洁能源方面具有非细菌大的潜力。未来氢可以替代汽油作为飞机、火车和汽车的燃料,但是目前生产氢的能力还不足。未来如果以工业规模大量培养这种产氢的盐厌氧菌属并提细菌其氢气产量,那么氢很有可能作为一种可替代汽油的能源。但是,目前还没能达到这种规模。
目前在肿瘤基因治疗中遇到的zui大障碍就是如何特异性的传递抗肿瘤基因产物到实体瘤组织。虽然现已构建了几种方法来控制抗肿瘤基因在实体瘤的表达,但还没有一个严格特异性靶向到实体瘤的转运系统。在这种情况下,有人利用大肠杆菌的基因和酶作为治疗肿瘤的药物前体(prodrug),这种本身无活性的药物前体进入体内以后可转变为细菌活性的药物。
1、药物前体在肿瘤基因治疗中的应用未来氢可以替代汽油作为飞机、火车和汽车的燃料,但是目前生产氢的能力还不足。未来如果以工业规模大量培养这种产氢的盐厌氧菌属并提细菌其氢气产量,那么氢很有可能作为一种可替代汽油的能源。但是,目前还没能达到这种规模。
想了解更多的韩国SD产品及服务请扫描下方二维码:我司还提供其它进口或国产试剂盒:登革热、疟疾、流感、A链球菌、合胞病毒、腮病毒、乙脑、寨卡、黄热病、基孔肯雅热、克锥虫病、违禁品滥用、肺炎球菌、军团菌等试剂盒以及日本生研细菌分型诊断血清、德国SiFin诊断血清、丹麦SSI诊断血清等产品。
二维码扫一扫
【公司名称】 广州健仑生物科技有限公司
【】 杨永汉
【】
【腾讯 】
【公司地址】 广州清华科技园创新基地番禺石楼镇创启路63号二期2幢101-3室
【企业文化宣传】
A team of scientists reportedly found a hydrogen-producing Halanaerobium hydrogenoformans at Lake Sophor in Washington that produces a certain amount of hydrogen under salt and alkaline conditions, more than GMOs competitive.
The team's Milestone, an expert on ecology in extreme environments, did not start out looking for bacteria that produce hydrogen. She was initially interested in bacteria that help to clean the environment, especially in Lake Thoos, where extreme microbes are studied. Such microorganisms can grow in extreme conditions such as temperature, acidity, alkalinity or chemical plant concentration. Living in this harsh environment, the salt anaerobic bacteria still have metabolic capacity.
Researchers through the bacteria will study the ecological conditions of microorganisms in the extreme environment, but this particular bacteria has drawn people's attention, therefore, the researchers isolated the bacteria, and conducted a more detailed study.
The study found that this salt anaerobic bacterium produces hydrogen and 1,3-propanediol under bacterial pH and salinity conditions and is of value for industrial applications. Among them, 1,3-propanediol is an organic compound that can be made into industrial products, including composite materials, adhesives, laminates and coatings, etc., and can also be made into a solvent as an antifreeze.
Hydrogen, on the other hand, may have greater utility, especially in the non-bacterial potential for future clean energy. In the future, hydrogen can replace gasoline as a fuel for airplanes, trains and cars, but the current ability to produce hydrogen is not enough. In the future, if large-scale c*tion of this hydrogen-producing salt-producing anaerobic bacteria on an industrial scale and the production of hydrogen by bacteria is possible, hydrogen is likely to serve as an alternative energy source for gasoline. However, it has not reached such a scale yet.
At present, the biggest obstacle encountered in tumor gene therapy is how to specifically deliver anti-tumor gene products to solid tumor tissues. Although several methods have been developed to control the expression of anti-tumor genes in solid tumors, there is no single delivery system that is specifically targeted to solid tumors. In this case, E. coli genes and enzymes are used as drug prodrugs for the treatment of tumors. Such prodrugs, which are inactive on their own, can be transformed into bacteria-active drugs when they enter the body.
1, the application of drug precursors in cancer gene therapy Future hydrogen can replace gasoline as a fuel for aircraft, trains and cars, but the current ability to produce hydrogen is not enough. In the future, if large-scale c*tion of this hydrogen-producing salt-producing anaerobic bacteria on an industrial scale and the production of hydrogen by bacteria is possible, hydrogen is likely to serve as an alternative energy source for gasoline. However, it has not reached such a scale yet.