品牌
生产厂家厂商性质
广州市所在地
美国Seracare大肠杆菌O111:H8物种阳性对照
广州健仑生物科技有限公司
广州健仑长期供应各种生物原料,主要代理品牌:美国Seracare、西班牙Certest、美国Fuller等等。
主要产品包括各种标准品、阳性对照品、阳性质控品、单克隆抗原抗体。
其中常见的有:弓形虫病、西尼罗河病毒、类风湿因子、疟疾、麻疹、莱姆病、百日咳杆菌、大肠杆菌、鼠伤寒沙门氏菌、李斯特菌等阳性对照品。
美国Seracare大肠杆菌O111:H8物种阳性对照
我司还提供其它进口或国产试剂盒:登革热、疟疾、流感、A链球菌、合胞病毒、腮病毒、乙脑、寨卡、黄热病、基孔肯雅热、克锥虫病、违禁品滥用、肺炎球菌、军团菌、化妆品检测、食品安全检测等试剂盒以及日本生研细菌分型诊断血清、德国SiFin诊断血清、丹麦SSI诊断血清等产品。
欢迎咨询
欢迎咨询2042552662
【Seracare产品介绍】
货号 | 中文名称 | 英文名称 |
JL-SC001 | 鼠伤寒沙门氏菌阳性对照 | Salmonella typhimurium Positive Control |
JL-SC002 | 志贺氏菌属阳性对照 | Shigella Species Positive Control |
JL-SC003 | 弧菌属阳性对照 | Vibrio Species Positive Control |
JL-SC004 | 军团菌嗜肺军团菌阳性对照 | Legionella pneumophila Positive Control |
JL-SC005 | BacTrace®金黄色葡萄球菌阳性对照 | BacTrace® Staphylococcus aureus Positive Control |
JL-SC006 | Bactrace®化脓性链球菌阳性对照 | BacTrace® Streptococcus pyogenes Positive Control |
JL-SC007 | bactrace®无乳链球菌阳性对照 | BacTrace® Streptococcus agalactiae Positive Control |
JL-SC008 | 李斯特菌属特异性阳性对照 | Listeria, Genus-Specific Positive Control |
JL-SC009 | 弯曲菌属特异性阳性对照 | Campylobacter, Genus-Specific Positive Control |
JL-SC010 | 幽门螺旋杆菌阳性对照 | Helicobacter pylori Positive Control |
JL-SC011 | 大肠杆菌O157:H7阳性对照 | Escherichia coli O157:H7 Positive Control |
JL-SC012 | BacTrace® | BacTrace® Escherichia coli O111:H8 Species Positive Control |
JL-SC013 | BacTrace®大肠杆菌O26:H11物种阳性对照 | BacTrace® Escherichia coli O26:H11 Species Positive Control |
JL-SC014 | Bactrace®大肠杆菌O103:H8的阳性对照,热灭活 | BacTrace® E.coli O103:H8 Positive Control, Heat-Killed |
JL-SC015 | Bactrace®大肠杆菌O145:H2的阳性对照,热灭活 | BacTrace® E.coli O145:H2 Positive Control, Heat-Killed |
JL-SC016 | Bactrace®大肠杆菌O121:H19的阳性对照,热灭活 | BacTrace® E.coli O121:H19 Positive Control, Heat-Killed |
JL-SC017 | Bactrace®大肠杆菌O45:H2的阳性对照,热灭活 | BacTrace® E.coli O45:H2 Positive Control, Heat-Killed |
JL-SC018 | BacTrace®大肠杆菌O104:H12阳性对照 | BacTrace® Escherichia coli O104:H12 Positive Control |
JL-SC019 | BacTrace®大肠杆菌O91阳性对照 | BacTrace® Escherichia coli O91 Positive Control |
JL-SC020 | 鲑肾杆菌阳性对照 | Renibacterium salmoninarum Positive Control |
美国Seracare
当来自英国牛津大学的科研人员减少了布氏锥虫锥鞭毛体的一种称为ClpGM6的蛋白质表达的时候,这个细胞切换到了一种类似于短膜虫期的形态。动基体接近核或者在其之前,而且鞭毛的一长部分伸出了细胞。这些寄生虫与短膜虫期不一样——它们缺乏见于这个生命阶段的一种*的表面蛋白——但是它们有能力存活并且繁殖超过40代。
ClpGM6位于鞭毛的附着区,而且很可能有助于把鞭毛与细胞体连接。失去ClpGM6导致鞭毛的帮助确定细胞尺寸和形状的附着区缩短。这项研究提出,在生命周期中以及在寄生虫进化中出现的显著形态变化可能是由于几个关键蛋白质层次上的调整造成的,而不是源于寄生虫蛋白质或DNA内容的大量变化。
蛋白质是来自DNA的分子马达,执行对生命*的任务,它们是莱斯大学理论生物物理学研究中心(CTBP)的José Onuchic及其同事研究的主要焦点。研究人员使用他们的能量全景图理论(energy landscape theory),来确定一段未折叠的氨基酸链zui终成为一种功能蛋白所采用的途径。这涉及到,计算链中每一个氨基酸的结合模式以及折叠进行中周围环境的影响。
当几年前Jianpeng Ma遇见Onuchic时,他意识到一个机会,他说:“我告诉他,病毒系统有一个非常重要的特征,将对他的能量全景图方法非常理想。”
长期以来,研究人员已经通过X光散射技术观察到了血球凝集素的初始和zui终结构。但是,由于变化发生得如此之快,我们不可能捕获到运输过程中的糖蛋白图像。Ma说,阻止流感的关键可能是,攻击这些中间结构。
能量全景图理论预测一个蛋白如何折叠,无论它发生的有多快。在血清凝集素的情况下,解折叠和重折叠发生在几秒钟的时间内。在这个过程中,蛋白质的一部分“破裂”并释放融合肽。
本文共同作者、莱斯大学博士后研究人员Jeffrey Noel称:“融合肽是分子zui重要的部分。血清凝集素附着到病毒膜上,当这些肽被释放时,它们就将自己嵌入到目标细胞的细胞膜中,从而在两者之间产生关联。”
Ma说:“血球凝集素的目的是,在两层膜之间戳一个洞。它们必须融合,这样遗传物质才会被注入到人体细胞中。”
血球凝集素被宿主细胞表面的多糖受体所识别,当细胞吞噬它时被吸收。zui初,该蛋白的一部分形成一个帽,可保护内部的片段。
美国Seracare
我司还提供其它进口或国产试剂盒:登革热、疟疾、流感、A链球菌、合胞病毒、腮病毒、乙脑、寨卡、黄热病、基孔肯雅热、克锥虫病、违禁品滥用、肺炎球菌、军团菌、食品安全、化妆品检测、药物滥用检测等试剂盒以及日本生研细菌分型诊断血清、德国SiFin诊断血清、丹麦SSI诊断血清等产品。
想了解更多的产品及服务请扫描下方二维码:
【公司名称】 广州健仑生物科技有限公司
【市场部】 杨永汉
【】
【腾讯 】 2042552662
【公司地址】 广州清华科技园创新基地番禺石楼镇创启路63号二期2幢101-103室
When researchers from the University of Oxford in the United Kingdom reduced the protein expression of ClpGM6, a member of the Trypanosoma brucei conidia, the cell switched to a morphology similar to the meiosis stage. The moving body approaches the nucleus or before it, and a long portion of the flagellum protrudes out of the cell. These parasites are not the same as the meiosis - they lack a unique surface protein found at this stage of their life - but they are capable of surviving and breeding for more than 40 generations.
ClpGM6 is located in the attachment region of the flagella and probably helps to connect the flagella to the cell body. Lack of ClpGM6 Leads to Flagella Help to Determine Cell Size and Shape Attachment Area Shortens. This study suggests that significant morphological changes that occur during life cycles and during parasite evolution may be due to adjustments at several key protein levels rather than a substantial change in parasite proteins or DNA content.
Proteins, a molecular motor derived from DNA, perform mission-critical tasks that are the main focus of José Onuchic and his colleagues at the Center for Theoretical Biophysics (CTBP) at Rice University. Researchers use their energy landscape theory to determine the pathway by which an unfolded amino acid chain eventually becomes a functional protein. This involves calculating the mode of binding for each amino acid in the chain and the impact of the environment in which the fold is in progress.
When Jianpeng Ma met Onuchic a few years ago, he realized there was an opportunity. He said: "I told him that the virus system has a very important feature that would be ideal for his energy panorama."
For a long time, researchers have observed the initial and final structure of hemagglutinin by X-ray scattering. However, because changes are happening so fast, we can not capture images of glycoproteins during transport. Ma said the key to stopping the flu could be to attack these intermediaries.
Energy panorama theory predicts how a protein folds, no matter how fast it occurs. In the case of serum lectin, unfolding and refolding occur in seconds. During this process, a portion of the protein "cracks" and releases the fusion peptide.
Co-author Jeffrey Noel, a postdoctoral researcher at Rice University, said: "Fusion peptides are the most important part of the molecule. Serum lectins attach to viral membranes and when these peptides are released they embed themselves into the cell membrane of the target cell In the relationship between the two.
Ma said: "The purpose of hemagglutinin is to poke a hole between two membranes, and they must be fused so that genetic material can be injected into human cells."
Hemagglutinin is recognized by polysaccharide receptors on the surface of host cells and is absorbed by cells as they are phagocytosed. Initially, a portion of the protein forms a cap that protects the internal fragments.