品牌
生产厂家厂商性质
广州市所在地
美国Seracare大肠杆菌O157:H7阳性对照
广州健仑生物科技有限公司
广州健仑长期供应各种生物原料,主要代理品牌:美国Seracare、西班牙Certest、美国Fuller等等。
主要产品包括各种标准品、阳性对照品、阳性质控品、单克隆抗原抗体。
其中常见的有:弓形虫病、西尼罗河病毒、类风湿因子、疟疾、麻疹、莱姆病、百日咳杆菌、大肠杆菌、鼠伤寒沙门氏菌、李斯特菌等阳性对照品。
美国Seracare大肠杆菌O157:H7阳性对照
我司还提供其它进口或国产试剂盒:登革热、疟疾、流感、A链球菌、合胞病毒、腮病毒、乙脑、寨卡、黄热病、基孔肯雅热、克锥虫病、违禁品滥用、肺炎球菌、军团菌、化妆品检测、食品安全检测等试剂盒以及日本生研细菌分型诊断血清、德国SiFin诊断血清、丹麦SSI诊断血清等产品。
欢迎咨询
欢迎咨询2042552662
【Seracare产品介绍】
货号 | 中文名称 | 英文名称 |
JL-SC001 | 鼠伤寒沙门氏菌阳性对照 | Salmonella typhimurium Positive Control |
JL-SC002 | 志贺氏菌属阳性对照 | Shigella Species Positive Control |
JL-SC003 | 弧菌属阳性对照 | Vibrio Species Positive Control |
JL-SC004 | 军团菌嗜肺军团菌阳性对照 | Legionella pneumophila Positive Control |
JL-SC005 | BacTrace®金黄色葡萄球菌阳性对照 | BacTrace® Staphylococcus aureus Positive Control |
JL-SC006 | Bactrace®化脓性链球菌阳性对照 | BacTrace® Streptococcus pyogenes Positive Control |
JL-SC007 | bactrace®无乳链球菌阳性对照 | BacTrace® Streptococcus agalactiae Positive Control |
JL-SC008 | 李斯特菌属特异性阳性对照 | Listeria, Genus-Specific Positive Control |
JL-SC009 | 弯曲菌属特异性阳性对照 | Campylobacter, Genus-Specific Positive Control |
JL-SC010 | 幽门螺旋杆菌阳性对照 | Helicobacter pylori Positive Control |
JL-SC011 | Escherichia coli O157:H7 Positive Control | |
JL-SC012 | BacTrace®大肠杆菌O111:H8物种阳性对照 | BacTrace® Escherichia coli O111:H8 Species Positive Control |
JL-SC013 | BacTrace®大肠杆菌O26:H11物种阳性对照 | BacTrace® Escherichia coli O26:H11 Species Positive Control |
JL-SC014 | Bactrace®大肠杆菌O103:H8的阳性对照,热灭活 | BacTrace® E.coli O103:H8 Positive Control, Heat-Killed |
JL-SC015 | Bactrace®大肠杆菌O145:H2的阳性对照,热灭活 | BacTrace® E.coli O145:H2 Positive Control, Heat-Killed |
JL-SC016 | Bactrace®大肠杆菌O121:H19的阳性对照,热灭活 | BacTrace® E.coli O121:H19 Positive Control, Heat-Killed |
JL-SC017 | Bactrace®大肠杆菌O45:H2的阳性对照,热灭活 | BacTrace® E.coli O45:H2 Positive Control, Heat-Killed |
JL-SC018 | BacTrace®大肠杆菌O104:H12阳性对照 | BacTrace® Escherichia coli O104:H12 Positive Control |
JL-SC019 | BacTrace®大肠杆菌O91阳性对照 | BacTrace® Escherichia coli O91 Positive Control |
JL-SC020 | 鲑肾杆菌阳性对照 | Renibacterium salmoninarum Positive Control |
美国Seracare
此研究主题刊登于2014年8月的《实验生物及医学》,证明了丙酮酸脱氢酶复合体不仅对于胰岛素基因表达和葡萄糖刺激的胰岛素分泌非常必要,同时还直接影响β-细胞的生长和成熟,更阐明了葡萄糖代谢会直接调控β细胞质量和可塑性。
纽约州立大学水牛城分校生物化学、医学和生物医学科学学院的特聘教授,同时也是资深作者的莫成?帕特尔博士说道:“这些发现显示了葡萄糖代谢是调控β细胞质量的主要调控因子,很可能是独立的讯息传递路径,例如可能不同于胰岛素受体作用物2讯息传递路径。”
《实验生物及医学》期刊主编史蒂芬?古德曼博士说:“帕特等人的研究利用小鼠基因剔除的方式来研究丙酮酸脱氢酶复合体在胰脏β-细胞发育所扮演的角色。他们的研究证明丙酮酸脱氢酶复合体直接影响β-细胞的细胞大小及可塑性。”
卢森堡大学卢森堡中心系统生物医学研究院(LCSB)的科学家们已经将皮肤细胞神经元重编程植入到小鼠大脑并*维持长期稳定。植入后6个月,神经元功能上*整合到大脑。这一成功,持久稳定,神经元的植入为将来治疗帕金森病人智力时,用健康的神经元替换患病的神经元增加希望。
图片显示大脑切片部分,其中被移植的诱导神经干细胞*整合到大脑的神经元网络(蓝色)发育成一个复杂的功能性神经元。
LCSB的测试中,马克斯普朗克研究所和大学医院明斯特和比勒费尔德大学的研究小组和同事成功将由皮肤细胞进行重编程诱导的神经元在小鼠大脑中创建了稳定的神经组织。产生神经元的干细胞研究者的技术,或者更具体的说诱导神经元干细胞(iNSC),在培养皿中培养的宿主皮肤细胞在很大程度上改善了植入细胞的相容性。
治疗的小鼠没有显示出不利的副作用,甚至在植入六个月后成为大脑的海马和皮质区域。植入神经元*整合到大脑的复杂网络。该神经元表现出正常活性并且通过新形成的突触——神经细胞之间的接触点连接到原始脑细胞。
狡猾的寄生虫在其生命周期中常常经历显著的外形变化,让它们能够适应不同的生活环境并且繁盛起来。但是发表在《细胞生物学杂志》(The Journal of Cell biology)的一项研究发现,这些变形看上去可能没有看上去的那么困难。
非洲的“昏睡病”是一种由称为布氏锥虫(Trypanosoma brucei)的由采采蝇传播的寄生虫物种导致的疾病。这种单细胞寄生虫拥有一个内部储藏着这个细胞的线粒体DNA的动基体以及对于细胞运动具有关键作用的一个伸出的鞭毛。布氏锥虫在其发育周期经历了外形和构成的重大变化。在一个称为锥鞭毛体(trypomastigote)的阶段,动基体位于核之后,而几乎鞭毛的所有部分都与细胞相连。另一方面,在短膜虫期(epimastigote)阶段,动基体在核之前,而且只有鞭毛的一部分与细胞相连。布氏锥虫的近亲有许多不同的形状,这表明这些寄生虫在进化中也改变了它们的形态。
美国Seracare
我司还提供其它进口或国产试剂盒:登革热、疟疾、流感、A链球菌、合胞病毒、腮病毒、乙脑、寨卡、黄热病、基孔肯雅热、克锥虫病、违禁品滥用、肺炎球菌、军团菌、食品安全、化妆品检测、药物滥用检测等试剂盒以及日本生研细菌分型诊断血清、德国SiFin诊断血清、丹麦SSI诊断血清等产品。
想了解更多的产品及服务请扫描下方二维码:
【公司名称】 广州健仑生物科技有限公司
【市场部】 杨永汉
【】
【腾讯 】 2042552662
【公司地址】 广州清华科技园创新基地番禺石楼镇创启路63号二期2幢101-103室
The subject of the study, published in August 2014, "Experimental Biology and Medicine," demonstrates that pyruvate dehydrogenase complexes are essential not only for insulin gene expression and glucose-stimulated insulin secretion but also for β-cell growth and Mature, but also shows that glucose metabolism will directly regulate β-cell quality and plasticity.
Dr. Moblie Pa, Distinguished Professor of Biochemistry, Medical and Biomedical Sciences at the State University of New York at Buffalo, said: "These findings show that glucose metabolism is a major regulator of beta-cell mass, Probably an independent messaging pathway, for example, may differ from the insulin receptor 2 signaling pathway. "
Dr. Stephen Goodman, editor-in-chief of Experimental Biology and Medicine, said: "Pat et al's study explored the role of the pyruvate dehydrogenase complex in the pancreatic β-cell development using gene knockout in mice. Their research shows that pyruvate dehydrogenase complex directly affects the cell size and plasticity of β-cells. "
Scientists at the Luxembourg Center for System Biomedicine Research (LCSB) at the University of Luxembourg have already implanted skin-cell neurons into the mouse brains and have maintained long-term stability for the first time. Six months after implantation, neurons functionally integrate compley into the brain. This success, lasting stability, neuronal implantation for the future treatment of Parkinson's patients inligence, with healthy neurons to replace diseased neurons increase hope.
The picture shows a section of the brain that grows into a complex functional neuron in which the transplanted neural stem cells are fully integrated into the brain's neuronal network (blue).
In the latest LCSB test, research groups and colleagues at the Max Planck University and the University Hospital in Münster and Bielefeld succeeded in creating neurons that are reprogrammed by skin cells to create stable Nerve tissue. Stem Cells Producing Neurons Researchers' technology, or more specifically, induction of neuronal stem cells (iNSCs), host skin cells cultured in petri dishes greatly improve the compatibility of the implanted cells.
The treated mice showed no adverse side effects and became brain regions of the hippocampus and cortex even six months after implantation. Implanted neurons are fully integrated into the complex network of the brain. The neurons exhibit normal activity and are connected to the naive brain cells through the contact points between the newly formed synaptic-neurons.
Cunning parasites often experience significant changes in shape throughout their life cycle, allowing them to adapt to different living environments and flourish. But a study published in The Journal of Cell biology found that these distortions may not seem so difficult.
Sleeping sickness in Africa is a disease caused by a parasitic species transmitted by tsetse flies called Trypanosoma brucei. The unicellular parasite has a moving body that holds the mitochondrial DNA of the cell inside, and a protruding flagella that is crucial for cell motility. Trypanosoma brucei undergoes significant changes in shape and composition during its developmental cycle. In a phase called trypomastigote, the motile matrix is behind the nucleus, with almost all parts of the flagellum connected to the cell. On the other hand, in the epimastigote stage, the motile matrix precedes the nucleus, and only a portion of the flagella is attached to the cell. The relatives of Trypanosoma brucei have many different shapes, suggesting that these parasites also changed their morphology during evolution.