品牌
生产厂家厂商性质
广州市所在地
美国US 违禁药物滥用十二联卡
广州健仑生物科技有限公司
广州健仑长期供应各种违禁品检测试纸、违禁品检测卡、违禁品检测试剂盒、药筛试纸、药筛试剂盒等,包括进口和国产的不同品牌。
主营品牌:美国US、美国Alfa、美国NovaBios、美国Cortez、国产创仑等等。
主要用途:筛查违禁品滥用残留、麻醉类药物残留、兴奋类药物残留等等。
检测范围:吗啡、巴比妥、尼古丁、KET、mamp、MDMA、BZO、THC、MTD、BAR、MDMA、AMP、BUP、PCP、TCA、OXY、MET等等。
产品特点:可以根据需求自主订制多联卡。可以自由组合,从二联到十五联都可以订制。
我司还提供其它进口或国产试剂盒:登革热、疟疾、流感、A链球菌、合胞病毒、腮病毒、乙脑、寨卡、黄热病、基孔肯雅热、克锥虫病、违禁品滥用、肺炎球菌、军团菌、化妆品检测、食品安全检测等试剂盒以及日本生研细菌分型诊断血清、德国SiFin诊断血清、丹麦SSI诊断血清等产品。
欢迎咨询
欢迎咨询2042552662
美国US 违禁药物滥用十二联卡
尿液试纸、唾液试纸、尼古丁检测卡、烟碱检测卡、违违禁品三联检测卡、违禁品五联检测卡、违禁品十联检测卡、药筛试剂、违禁品滥用检测试纸、违禁品快速检测试剂盒
美国US多联检测杯简介:
产品名称 | 规格 | 检测违禁品类型 |
违禁品十联检测杯 | 25T/盒 | MET.AMP.MTD.THC.BAR.TCA.COC.BZO.PCP.OPI |
违禁品十三联检测杯 | 25T/盒 | AMP.BAR.BZO.COC.MET.MOR.MTD.PCP.PPX.TCA.THC.XTC.WADU |
违禁品十二联检测杯 | 25T/盒 | BZO.BAR.COC.THC.MET.OPI.OXY.MDMA.PCP.AMP.BUP.MTD |
美国US单卡产品简介:
产品名称 | 英文缩写 | 检测阀值 |
吗啡 检测试剂盒 | MOP(OPI) | 300ng/ml |
mamp 检测试剂盒 | MAMP(MET) | 1000ng/ml |
K 检测试剂盒 | KET | 1000ng/ml |
Ecstasy 检测试剂盒 | MDMA | 500ng/ml |
cocaine 检测试剂盒 | COC | 300ng/ml |
hemp 检测试剂盒 | THC | 50ng/ml |
Amphetamine 检测试剂盒 | AMP | 1000ng/ml |
Benzene two nitrogen Zhuo 检测试剂盒 | BZO | 300ng/ml |
巴比妥 检测试剂盒 | BAR | 300ng/ml |
Methadone 检测试剂盒 | MTD | 300ng/ml |
【功能介绍】
可以检测尿液中是否含吗啡成分。从而定性判断被测者是否吸食了吗啡。
【样品要求】
用一次性尿杯收集尿样,无需处理可直接检测。
【检验方法】
1、测试前先阅读使用说明书;
2、用干净尿杯取尿样;
3、从铝箔袋中取出检测卡,置于干净平坦的台面上,用吸管;垂直滴加2-3滴尿样到加样孔中;
4、3-5分钟读结果。为确保结果的准确性,请勿在5分钟后判读结果。
【结果解释】
1、阳性:在反应区内只出现一条红色质控线。
2、阴性:在反应区内出现质控线和反应线两条红线。
3、无效:在反应区内质控线未出现,需重新测试。
【注意事项】
1、检测卡在室温下一次性使用,不得重复使用;
2、检测卡从铝箔袋中取出后应在30分钟内尽快使用
3、3~5分钟内判定结果,10分钟后的结果无效
4、谨防检测卡受潮,检测卡受潮或铝箔袋破损后,检测卡不能使用
5、由于标本采集时存在差异,检测过程中可能出现质控线C和反应线T的颜色深浅或明暗不等,但只要可见,不管其颜色深浅或明暗均应视为出现。
美国US
本文翻译自后面附录的参考文献,文中标记的文献编号参考原文。
自上世纪60年代中期发现脂质体(liposomes)以来,已被广泛地用作药物载体。作为疫苗递送载体和免疫刺激剂,对脂质体已进行了广泛的研究。脂质体通常被制备成纳米颗粒,模仿病原体特征,具有诱导体液免疫和细胞??免疫应答的能力。
自从半个世纪前发现脂质体以来,脂质体已是制药行业中研究zui多的纳米载体之一[1]。美国食品和药物管理局(FDA)于上世纪90年代批准了*个基于脂质体的治疗药[2]。由于脂质体具有生物相容性和可生物降解性,还可以增强药物的效力并降低毒性,因此被广泛用作药物递送载体[3-5]。
liposomes
脂质体通常有一个液态的核,外面是一层或多层由磷脂/鞘脂组成的双层膜壳,药物可以位于脂质体的核心,也可以位于外膜层。脂质体也是很好的药物传递载体,因为它具有较大量的药物有效载荷。脂质体可以由不同的脂质组成,可通过不同的组分而优化药物动力学性质[8]。脂质体作为药物/疫苗递送系统的其它优点包括其保护活性成分不被降解,改善药物的治疗指数(therapeutic index,TI),使药物具有靶向性[9,10]。目前,许多脂质体药物已经投入到市场,还有更多的脂质体药物正在进行临床试验[9]。不过,脂质体也有一些缺点,其中一个主要缺点是容易被单核吞噬细胞系统(mononuclear phagocytic system,MPS)从血液中快速清除[4,11]。脂质体的这个特点使其可以特异性的递送药物或疫苗到单核细胞或巨噬细胞[12],从而成为了研究得zui多的靶向吞噬细胞的药物传递系统,如肺结核病的治疗[16]。
接种疫苗是预防传染病的违禁品策略。有效的疫苗应能激发免疫反应,并提共持久的保护。传统疫苗主要是弱毒疫苗和灭活疫苗,弱毒疫苗保留有一定毒性,并具有返祖的可能,对于抵抗力低下的人来说会有风险;灭活疫苗可以会引起违禁品反应或自体免疫反应(allergic or autoimmune responses)。为了克服传统疫苗(弱毒疫苗、灭活疫苗)的缺点,现代疫苗通常都是基于亚单位疫苗的概念设计。亚单位疫苗通常是基于重组或纯化的蛋白质或多肽。亚单位疫苗没有毒力返祖的风险,也能够zui大限度地减少过敏或自体免疫反应。亚单位疫苗通常容易产生、相对稳定,但其缺点是免疫原性较差,从而降低疫苗的有效性。为了改善亚单位疫苗的免疫原性,有研究将脂质体(liposomes)、微球(microspheres)、脂质纳米颗粒(lipid-nanoparticles)、树枝状聚合物(dendrimers)、聚合物纳米粒子(polymeric-nanoparticles)等作为疫苗递送载体。其中脂质体是zui有前景的方法,脂质体可以作为佐剂,提高亚单位疫苗的免疫原性。
美国US
我司还提供其它进口或国产试剂盒:登革热、疟疾、流感、A链球菌、合胞病毒、腮病毒、乙脑、寨卡、黄热病、基孔肯雅热、克锥虫病、违禁品滥用、肺炎球菌、军团菌、食品安全、化妆品检测、药物滥用检测等试剂盒以及日本生研细菌分型诊断血清、德国SiFin诊断血清、丹麦SSI诊断血清等产品。
想了解更多的产品及服务请扫描下方二维码:
【公司名称】 广州健仑生物科技有限公司
【市场部】 杨永汉
【】
【腾讯 】 2042552662
【公司地址】 广州清华科技园创新基地番禺石楼镇创启路63号二期2幢101-103室
This article is translated from the back of the appendix reference, the text marked article number reference text.
Since the discovery of liposomes in the mid-1960s, it has been widely used as a drug carrier. Liposomes have been extensively studied as vaccine delivery and immunostimulants. Liposomes are usually prepared as nanoparticles, mimicking the characteristics of pathogens, with the ability to induce humoral and cellular immune responses.
Liposomes have been one of the most studied nanocarriers in the pharmaceutical industry since the discovery of liposomes half a century ago [1]. The United States Food and Drug Administration (FDA) approved the first liposome-based drug in the 1990s [2]. Liposomes are widely used as drug delivery vehicles due to their biocompatibility and biodegradability, which can also enhance drug efficacy and reduce toxicity [3-5].
liposomes
Liposomes usually have a liquid core, with one or more double-layered outer shells made of phospholipid / sphingolipids, which can be located in the core of the liposomes or in the outer layer. Liposomes are also good drug delivery vehicles as they have a larger amount of drug payload. Liposomes can be composed of different lipids and their pharmacokinetic properties can be optimized by different components [8]. Other advantages of liposomes as drug / vaccine delivery systems include their ability to protect active ingredients from degradation, improve the therapeutic index (TI) of the drug, and make the drug targetable [9,10]. Currently, many liposomal drugs have been put on the market, and more liposomal drugs are undergoing clinical trials [9]. However, there are some disadvantages with liposomes. One of the major drawbacks is that they are easily cleared from the blood by the mononuclear phagocytic system (MPS) [4,11]. This feature of liposomes makes it possible to deliver drugs or vaccines specifically to monocytes or macrophages [12], making it the most studied targeting phagocyte-based drug delivery system for the treatment of tuberculosis [ 16].
Vaccination is a contraband strategy to prevent infectious diseases. Effective vaccines should stimulate the immune response and provide lasting protection. Traditional vaccines are mainly attenuated vaccines and inactivated vaccines, and attenuated vaccines retain some toxicity and have the potential to return ancestry, posing a risk for those with low immunity; inactivated vaccines can cause contraband or autoimmune responses (Allergic or autoimmune responses). In order to overcome the shortcomings of traditional vaccines (attenuated vaccines, inactivated vaccines), modern vaccines are often based on the conceptual design of subunit vaccines. Subunit vaccines are usually based on recombinant or purified proteins or polypeptides. Subunit vaccines have no risk of returning to virulence and are also capable of minimizing allergies or autoimmune responses. Subunit vaccines are usually easy to produce and relatively stable, but have the disadvantage of being less immunogenic and thus reducing the effectiveness of the vaccine. In order to improve the immunogenicity of subunit vaccines, liposomes, microspheres, lipid-nanoparticles, dendrimers, and polymeric nanoparticles have been studied -nanoparticles) and the like as a vaccine delivery vehicle. Among them, liposomes are the most promising method. Liposomes can be used as an adjuvant to improve the immunogenicity of subunit vaccines.