公安大数据探索过程中都有哪些问题?
- 来源:数帮客
- 2018/3/21 18:56:2742312
【中国安防展览网 企业关注】近年来随着信息化技术的不断发展,现有的公安警务数据中心无论是规模还是架构都很难适应在海量数据场景下的数据管理和分析,直接影响了公安形势预判和重大决策。因此,在现阶段建设新的能够匹配公安业务场景的大数据系统是公安部门的迫切需求。
一、公安大数据建设面临的主要问题
目前各地公安机关纷纷进行公安大数据探索,积累了大量的经验,但是从全面推进公安大数据战略的高度来看,仍然存在以下几方面的突出问题。
(一)理念不够清晰,认识有待统一
1、对公安大数据的重大理论问题缺乏系统研究,基本概念和问题认识不清。
例如,对什么是公安大数据、怎样建设、如何充分发挥作用等基础问题还未研究清楚。
对公安大数据的理解犹如盲人摸象,各有各的看法和认识,甚至有错误的认识,这对公安大数据建设产生了负面影响。
2、公安大数据缺少明确的战略目标和清晰的发展理念。
各地公安机关都认识到大数据的重要性,但全国公安大数据建设具体如何布局和定位还不统一,更没有具体的实施路线图。
大数据建设呈现出了一定程度的盲目性,亟待更新发展理念和数据治理、业务处理、协作协同和管理决策的模式和方法。
3、低水平重复建设,无法持续优化。
对各地公安机关开展的大数据建设案例与实践经验缺少系统性总结和提炼,对实践中出现的问题没有深入开展研究,各地大数据建设容易在低水平重复。
而全国公安大数据建设不能在数据总量、存储能力和处理能力等方面形成整体合力,建设模式无法持续优化,无法形成规模效应。
(二)壁垒未打通,融汇不充分,集约度有待加强
1、数据壁垒导致的“信息孤岛”现象仍然存在。
目前,公安信息网、涉密网、视频专网等多种网络之间仍然存在数据共享不充分和业务流程衔接不畅的现象;
反电信网络诈骗、NGO管理等新建专题业务系统也仍然存在只注重利用系统外部数据资源,而以涉密或业务程序等借口而回避自身数据资源和业务接口的对外开放和共享问题,形成了新的“单向信息孤岛”。
大量数据分散在不同的业务部门,无法有效共享,形成了极大浪费。这当中,既有利益格局造成的人为壁垒,也有数据安全问题带来的安全壁垒,还有技术障碍带来的技术壁垒等,需要认真研究,加以破解。 2、公安机关外部数据资源汇聚融合不充分,存在接入目标不明确、可实施性较差等问题。
各地开展的警务云、大数据工程都强调外部数据资源接入的重要性,但对于需要接入哪些外部数据资源、接入后如何应用、服务哪些目标并不清楚,由此而导致了外部数据资源接入混乱、数据资源管理成本和处理技术难度增加等问题,数据应用成效无法彰显。
3、各地公安机关数据中心建设是“集中化”而非“集约化”。
虽然各地公安机关纷纷建立以云计算技术为支撑的数据中心,但实际上是各自为战,在技术上采用阿里、腾讯、华为、浪潮等不同厂商的技术方案,互通性存在较大问题,在管理上也没有实现真正的统一,无法做到资源的统一调度,达不到集约管理、运用的目标。
(三)警务模式创新不足,决策科学化、管理化、服务化程度有待优化。
为有效应用电信网络诈骗等新型*,各地公安机关积极开展合成作战尝试,出现了许多成功案例,但相当部分合成作战实践没有达到以数据流为,深度融合业务流、技术流和管理流,并实现警务流程革新再造的目标。
目前的公安大数据运用,还没有按照大数据的内在要求结合公安的特点进行改造和创新,一些所谓的技术创新缺乏针对性,往往只是把系统创新和技术创新生硬地嫁接到传统业务上。
以至前端信息采集、查询对比和后台数据支撑与推送服务,以及相应的实战指导都跟不上基层需求发展,基层大数据实践中出现了业务与技术两张皮现象。
民警既要用传统的老方法,又要用系统的新方法来开展工作,费时费力,效用叠减。
而基层民警应用能力普遍不足,亦是影响数据效用发挥的重要因素。
(四)人才队伍紧缺,统筹能力较弱,组织协同性差
各地方大数据建设的组织机构力量薄弱,组织乏力,既缺乏业务专家,又缺乏技术专家,很难体现出性,难以形成推动大数据警务建设的整体合力。
部分公安机关虽然在文件上有统筹的规划内容,但运行机制缺乏协同性。
作用无法充分发挥,统筹在实际工作中缺少有力抓手,没有把平台建设、数据整合、统一标准放在优先建设的地位并贯彻执行。