智慧城市网

登录

科普IT行业中时髦词汇:大数据

来源:“智城市慧生活”订阅号
2017/1/17 15:43:4541898
 
  在这个章节的后,我想总结一下自己对大数据的看法。
 
  一.大数据使企业真正有能力从以自我为中心改变为以客户为中心
 
  企业是为客户而生,目的是为股东获得利润。只有服务好客户,才能获得利润。但过去,很多企业是没有能力做到以客户为中心的,原因就是相应客户的信息量不大,挖掘不够,系统也不支持,目前的保险业就是一个典型。大数据的使用能够使对企业的经营对象从客户的粗略归纳(就是所谓提炼归纳的“客户群”)还原成一个个活生生的客户,这样经营就有针对性,对客户的服务就更好,投资效率就更高。
 
  二.大数据一定程度上将颠覆了企业的传统管理方式
 
  现代企业的管理方式是来源于对军队的模仿,依赖于层层级级的组织和严格的流程,依赖信息的层层汇集、收敛来制定正确的决策,再通过决策在组织的传递与分解,以及流程的规范,确保决策得到贯彻,确保每一次经营活动都有质量保证,也确保一定程度上对风险的规避。过去这是一种有用而笨拙的方式。在大数据时代,我们可能重构企业的管理方式,通过大数据的分析与挖掘,大量的业务本身就可以自决策,不必要依靠膨大的组织和复杂的流程。大家都是基于大数据来决策,都是依赖于既定的规则来决策,是高高在上的CEO决策,还是一线人员决策,本身并无大的区别,那么企业是否还需要如此多层级的组织和复杂的流程呢?
 
  三.大数据另外一个重大的作用是改变了商业逻辑,提供了从其他视角直达答案的可能性
 
  现在人的思考或者是企业的决策,事实上都是一种逻辑的力量在主导起作用。我们去调研,去收集数据,去进行归纳总结,后形成自己的推断和决策意见,这是一个观察、思考、推理、决策的商业逻辑过程。人和组织的逻辑形成是需要大量的学习、培训与实践,代价是非常巨大的。但是否这是的道路呢?大数据给了我们其他的选择,就是利用数据的力量,直接获得答案。就好像我们学习数学,小时候学九九乘法表,中学学几何,大学还学微积分,碰到一道难题,我们是利用了多年学习沉淀的经验来努力求解,但我们还有一种方法,在网上直接搜索是不是有这样的题目,如果有,直接抄答案就好了。很多人就会批评说,这是抄袭,是作弊。但我们为什么要学习啊?不就是为了解决问题嘛。如果我任何时候都可以搜索到答案,都可以用省力的方法找到佳答案,这样的搜索难道不可以是一条光明大道吗?换句话说,为了得到“是什么”,我们不一定要理解“为什么”。我们不是否定逻辑的力量,但是至少我们有一种新的巨大力量可以依赖,这就是未来大数据的力量。
 

 
  四.通过大数据,我们可能有全新的视角来发现新的商业机会和重构新的商业模式
 
  我们现在看这个世界,比如分析家中食品腐败,主要就是依赖于我们的眼睛再加上我们的经验,但如果我们有一台显微镜,我们一下就看到坏细菌,那么分析起来完全就不一样了。大数据就是我们的显微镜,它可以让我们从全新视角来发现新的商业机会,并可能重构商业模型。我们的产品设计可能不一样了,很多事情不用猜了,客户的习惯和偏好一目了然,我们的设计就能轻易命中客户的心窝;我们的营销也完全不同了,我们知道客户喜欢什么、讨厌什么,更有针对性。特别是显微镜再加上广角镜,我们就有更多全新的视野了。这个广角镜就是跨行业的数据流动,使我们过去看不到的东西都能看到了,比如前面所述的汽车案例,开车是开车,保险是保险,本来不相关,但当我们把开车的大数据传递到保险公司,那整个保险公司的商业模式就全变了,完全重构了。
 
  五.数据发展对IT本身技术架构的革命性影响
 
  后一点,我想谈的是大数据发展对IT本身技术架构的革命性影响。大数据的根基是IT系统。我们现代企业的IT系统基本上是建立在IOE(IBM小型机、Oracle数据库、EMC存储)+Cisco模型基础上的,这样的模型是Scale-UP型的架构,在解决既定模型下一定数据量的业务流程是适配的,但如果是大数据时代,很快会面临成本、技术和商业模式的问题,大数据对IT的需求很快就会超越了现有厂商架构的技术顶点,超大数据增长将带来IT支出增长之间的线性关系,使企业难以承受。因此,目前在行业中提出的去IOE趋势,利用Scale-out架构+开源软件对Scale-up架构+私有软件的取代,本质是大数据业务模型所带来的,也就是说大数据将驱动IT产业新一轮的架构性变革。去IOE潮流中的所谓国家安全因素,完全是次要的。
 
  所以,美国人说,大数据是资源,和大油田、大煤矿一样,可以*挖出大财富。而且和一般资源不一样,它是可再生的,是越挖越多、越挖越值钱的,这是反自然规律的。对企业如此,对行业、对国家也是这样,对人同样如此。这样的东西谁不喜欢呢?因此,大数据这么热门,是完全有道理的。
 
  新智慧生物的诞生?
 
  下面的想象就更狂野了,真正要实现,估计至少是我们十辈子或者一百辈子以后的事情。那时候,我们已经是祖宗了哈。大家就当科幻小说来看好了。
 
  从近一位微软副总裁的演讲说起。瑞克·拉希德(Rick Rashid)是微软研究院的副总裁,有一天,他在中国的天津迈上讲台,面对2000名研究者和学生,要发表演讲,他非常非常紧张。这么紧张是有原因的。问题在于,他不会讲中文,而他的翻译水平以前非常糟糕,似乎注定了这次的尴尬。
 
  “我们希望,几年之内,我们能够打破人们之间的语言障碍,”这位微软研究院的副总裁对听众们说。令人紧张的两秒钟停顿之后,翻译的声音从扩音器里传了出来。拉希德继续说:“我个人相信,这会让世界变得更加美好。”停顿,然后又是中文翻译。
 
  他笑了。听众对他的每一句话都报以掌声。有些人甚至流下了眼泪。这种看上去似乎过于热情的反应是可以理解的:拉希德的翻译太不容易了。每句话都被理解,并被翻译得天衣无缝。令人印象深的一点在于,这位翻译并非人类。
 
  这就是自然语言的机器翻译,也是长期以来人工智能研究的一个重要体现。人工智能从过去到未来都有清晰而巨大的商业前景,是以前IT业的热点,其热度一点不亚于现在的“互联网”和“大数据”。但是,人类过去在推进人工智能的研究遇到了巨大的障碍,后几乎绝望。
 
  当时人工智能就是模拟人的智能思考方式来构筑机器智能。以机器翻译来说,语言学家和语言专家必须不辞劳苦地编撰大型词典和与语法、句法、语义学有关的规则,数十万词汇构成词库,语法规则高达数万条,考虑各种情景、各种语境,模拟人类翻译,计算机专家再构建复杂的程序。后发现人类语言实在是太复杂了,穷举式的做法根本达不到基本的翻译质量。这条道路后的结果是,1960年代后人工智能的技术研发停滞不前数年后,科学家痛苦地发现以“模拟人脑”、“重建人脑”的方式来定义人工智能走入一条死胡同,这导致后来几乎所有的人工智能项目都进入了冷宫。
 
  这里讲个小插曲。我读大学的时候,有个老师是国内人工智能的教授,还是国内某个人工智能研究会的副会长。他评述当时的人工智能,不是人工智能,而是人工愚蠢,把人类简单的行为分解、分解再分解,再去笨拙地模拟,不是人怎么聪明怎么学,而是模拟学习蠢的人的简单的动作。他说,对于当时人工智能的进步,有些人沾沾自喜,说好像登月计划中人类离月亮更进一步了,其实,就是站上了一块石头对着月亮抒情,啊,我离你更近了。他对自己事业的自我嘲讽,让我至今记忆非常深刻。
 
  后来有人就想,机器为什么要向人学习逻辑呢,又难学又学不好,机器本身强大的是计算能力和数据处理能力,为什么不扬长避短、另走一条道路呢?这条道路就是IBM“深蓝”走过的道路。1997年5月11日,象棋大师卡斯帕罗夫在和IBM公司开发的计算机“深蓝”进行对弈时宣布失败,计算机“深蓝”因此赢得了这场意义深远的“人机对抗”。 “深蓝”不是靠逻辑、不靠所谓的人工智能取胜的,就是靠超强的计算能力取胜:思考不过你,但是算死你。
 
  类似的逻辑在后续也用到了机器翻译上。谷歌、微软和IBM都走上了这条道路。就是主要采用匹配法,同时结合机器学习,依赖于海量的数据及其相关相关统计信息,不管语法和规则,将原文与互联网上的翻译数据对比,找到相近、引用频繁的翻译结果做为输出。也就是利用大数据以及机器学习技术来实现机器翻译。现有的数据量越是庞大,那么这个系统就能越好地运行,这也正是为何新的机器翻译只有在互联网出现以后才有可能重新取得突破性进展的原因所在。
 
  因此,目前这些公司机器翻译团队中,有不少计算机科学家,但却连一个纯粹的语言学家也没有,只要擅长数学和统计学,然后又会编程,那就可以了。
 
  总而言之,利用这种技术,计算机教会自己从大数据中建立模式。有了足够大的信息量,你就能让机器学会做看上去有智能的事情,别管是导航、理解话语、翻译语言,还是识别人脸,或者模拟人类对话。英国剑桥微软研究院的克里斯·毕肖普(Chris Bishop)打了个比方:“你堆积足够多的砖块,然后退上几步,就能看到一座房子。”
 
  这里我们假设这种技术能够持续进步,未来基于大数据和机器学习基础上的人工智能达到比较流畅地模拟人类对话,就是人类可以和机器进行比较自如的对话。
 
  事实上,IBM的“沃森”计划就是这样科技工程,比如试图让计算机当医生,能够对大部分病进行诊断,并和病人进行沟通。另外,也假设目前刚刚兴起的穿戴式计算设备取得巨大的进展。这种进展到什么程度呢?就是你家的宠物小狗身上也装上了各种传感器和穿戴式设备,比如有图像采集,有声音采集,有嗅觉采集,有对小狗的健康进行监控的小型医疗设备,甚至还有电子药丸在小狗的胃中进行消化情况监控。小狗当然也联上网,也一样产生了巨大的数据量。这时,我们假设基于这些大数据建模,能够模拟小狗的喜怒哀乐,然后还能够通过拟人化的处理进行语音表达,换句话说,就是模拟小狗说人话,比如主人回家时,小狗摇尾巴,旺旺叫,那么这个附着于小狗身上的人工智能系统就会说,“主人,真高兴看到你回家”。不仅如此,你还可以和小狗的人工智能系统进行对话,因为这个人工智能系统能基本理解你的意思,又能够代替小狗拟人化表达。以下我们模拟一下可能的对话:
 
  你:“小狗,今天过得好?”小狗:“不错啊,主人你今天换的新狗粮味道很好,总觉得没有吃够。”你:“那很好。我们以后继续买这种狗粮。对了,今天有什么人来吗?”小狗:“只有邮递员来投递报纸。另外,邻居家的小狗玛丽也来串门,我们一起玩了一下午。”你:“那你们玩的怎么样?”小狗:“很开心啊。我好像又进入了初恋呢。”
 
  我们可以把上面的模拟对话当成一个笑话。但其实,我们这个时候就会发现一个惊人的事实,就是你其实是面对了两只小狗,一只是物理意义上的小狗,一只是基于大数据和机器学习的人工智能虚拟小狗,而且虚拟小狗比物理小狗还要聪明,真正善解人意。那么,这个虚拟小狗是不是新的智慧生物呢?
 
  我们继续把这个故事来做延伸,把小狗换成未来的人,人在一生中产生大量的数据,根据这些数据建模可以直接推演出很多的结论,比如喜欢看什么样的电影啊,喜欢什么口味的菜啊,在遇到什么问题时会怎么采取什么行动啊。
 
上一页  [1]  [2]  [3]  [4]  下一页

上一篇:VR需由硬件内容平台环环相扣方能正常发展

下一篇:大数据新能源发展“安全先行”切莫忘

相关资讯:

首页|导航|登录|关于本站|联系我们