diSPIM是一种灵活和易于使用的实施选择性平面照明显微镜(的SPIM),允许双视图(d样品的),而安装在一个倒置显微镜上(即SPIM的物镜是直立)。diSPIM由NIH / NIBIB和应用科学仪器(ASI)的Hari Shroff实验室共同开发。SPIM也称为光片荧光显微镜或LSFM,因为它使用光片或光平面垂直于成像方向照亮样品。
什么是SPIM或LSFM?
选择性平面照明显微镜(SPIM)是一种快速而柔和的成像技术,将宽视野成像的速度与适度的光学切片和低的光漂白结合在一起。它已成为重要的荧光成像方式,尤其是对于体积成像。SPIM也称为光片荧光显微镜(LSFM)或简称为“光片”。 SPIM或LSFM的定义特征是从侧面对焦平面进行平面照明。在任何给定时间仅照亮样品的一小部分,从而使光损伤最小化,并且提供光学切片,与宽视野落射荧光相比,可以提高SNR。由于以广角(二维平行)方式收集图像,因此,光片成像比点扫描共聚焦显微镜要快得多,点扫描共聚焦显微镜一次只能检测一个像素。
光学薄片显微镜由于以下三个关键特性而迅速在体积成像中获得普及:首先,由于将激发限制在焦平面附近,因此光损伤最小化,例如,生物存活的时间更长。第二,获得良好的光学切片,通常接近共聚焦显微镜。第三,采集速度非常快,比传统的共聚焦显微镜快几个数量级。 SPIM的主要缺点是,需要额外的光学器件来生成光片。见的是,将一个单独的照明物镜与检测物镜正交放置,并将产生纸张的光学器件放置在该照明物镜和激光源之间。添加额外的镜头会给成像系统和样品安装带来空间限制。从本质上讲,显微镜需要围绕样品进行设计,因此存在各种各样的光片显微镜设计,每种设计都不同的样品和不同的安装要求。相比之下,传统的共聚焦或落射荧光显微镜只有一条光路,可以容纳更多种类的样品。换句话说,SPIM的优点是以任何单个工具的适用范围更窄为代价的。
方案
将两个物镜以直角放置在水平安装在开放式培养皿中的样品上方,每个物镜与垂直方向成45度角。从一个物镜创建一个光片,并使用另一个物镜对其进行成像。通过将光片移动通过样品来收集一堆图像。对于某些应用程序,单个视图或堆栈中的3D信息就足够了(iSPIM)。对于双视图系统,两个物镜的作用相反,以从垂直方向收集另一个堆栈,然后可以将两个数据集进行计算合并以生成具有各向同性分辨率的3D数据集(克服了通常的轴向分辨率差的问题从其他视图获取信息)。因此,双视图diSPIM具有两条(通常是对称的)光路,包括两个扫描仪和两个摄像头。
diSPIM“头”可以安装在各种倒置显微镜上,包括ASI的RAMM框架。diSPIM系统可以从各种系统集成商处获得。各种开源和专有软件包可用于数据采集和数据处理。不论所使用的系统集成商和软件如何,大多数底层显微镜硬件都是相同的。
diSPIM目标的选择是有限的,因为它们必须共同聚焦而不互相碰撞。diSPIM的物镜是40倍水浸物镜,NA为0.8(Nikon CFI Apo 40XW NIR)。奥林巴斯20x / 0.5物镜是另一种可能性1)尼康10x / 0.3。ASI和Special Optics共同开发了一种适用于diSPIM的透明组织物镜,该物镜可以以平板形式或在12 mm球形包膜中对高达5 mm深的透明组织进行成像。单面系统(iSPIM)具有更大的灵活性,因为照明物镜可以是低NA长WD物镜。 sCMOS相机于SPIM成像。配备了Hamamatsu Flash4,Andor Zyla,PCO Edge和Photometrics Prime 95B相机的diSPIM系统。 ASI制造了紧凑的光纤耦合2D振镜或“扫描仪”,它是系统的组成部分。扫描仪的原始版本通过在一个轴上进行快速扫描来创建光片,并使用另一个轴将光片移动通过样品2)。还提供带有圆柱透镜的扫描仪版本,用于产生静态光片。激发激光(或激光发射)的输出被简单地馈送到扫描仪中。使用2×1光学开关或双输出激光发射非常有帮助,这样激发就可以全部引导到有源光路中的扫描仪。
对于需要环境控制的应用,diSPIM可以轻松地配备恒温箱外壳和适当的设备,以保持样品的存活和快乐。 底部物镜(倒置显微镜)通常具有较低的放大倍率物镜和较便宜的用于定位样品的照相机。可以轻松添加落射照明。
优势
像其他光片技术一样,diSPIM仅照亮聚焦平面,因此是使活细胞和生物成像的理想选择,因为它地减少了光漂白和光毒性效应。与传统或旋转盘共焦系统相比,轴向分辨率提高了约2倍,光漂白减少了10倍以上,速度可与旋转盘媲美。查看与confocal的更详细的比较。 与许多其他光片实现相比,diSPIM的主要优势在于,与倒置显微镜类似,样品的安装非常简单。见的是,将标本放在24 x 50 mm的盖玻片上,盖玻片固定在一个特殊的腔室中,该腔室可容纳浸渍介质。具有开放式安装的其他灯片实现不具有各向同性分辨率。查看光片法的更详细比较。 除了方便定位样品外,底部物镜还可用于光操纵(包括光遗传学)或其他实验技术。它也可以用来提供样本的第三张独立视图。这种灵活性也是diSPIM的优势。 diSPIM是一种模块化显微镜,因此可以根据您的特定需求进行多种变化和添加。NIH研究人员,Applied Scientific Instrumentation等正在探索各种新功能和改进。请参阅部分变体列表。 diSPIM系统可从多个系统集成商处购买。与其他商用轻型薄板解决方案相比,它们便宜且灵活。与定制的SPIM / LSFM系统相比,它们易于获取,使用和维护。另请参见SPIM技术的更完整的技术比较。
配置
ASI提供了所有必要的硬件来实现diSPIM,这是一种灵活且易于使用的选择性平面照明显微镜(SPIM)实现,可在安装在倒置(i)上的情况下实现样品的双视图(d)。显微镜。diSPIM“头”可以安装在各种倒置显微镜上,包括ASI的RAMM框架。 ASI制造光机械元件,包括电动平台,用于创建和移动光片的2D振镜,以及压电物镜移动器。需要物镜,激光和照相机来完成系统;用户可以自己购买其他物品,使用出售diSPIM的各种系统集成商的服务,或通过ASI购买它们。 diSPIM已在盖玻片上培养的细胞,嵌入在学院凝胶上的细胞c上成功进行了测试。线虫和斑马鱼的胚胎,以及许多其他样本。
单面系统(iSPIM)
从一个物镜创建并使用另一物镜成像的光片。通常通过使用扫描仪(galvo)移动光片,使光片穿过样品,该扫描器与移动成像物镜的压电平台同步。
优势:的购置,的,直接的设置。 缺点: XY分辨率优于Z分辨率。
双面系统(diSPIM)
双方都有光片扫描仪,压电物镜定位器和相机。在实验过程中,从两个视图中都收集了一堆图像,并且可以将两个数据集进行计算合并以生成具有各向同性分辨率的3D数据集(另一个视图中的信息克服了通常的轴向分辨率差的问题)。如果需要,可以单面模式运行。
优势:XY和Z分辨率都非常好–结合了速度和分辨率,这是活细胞成像所的。 缺点:需要购买更多的硬件。各向同性分辨率所需的数据后处理。