资本“高烧”严重 服务机器人该如何发展?
- 来源:百略网
- 2017/1/4 9:08:2424638
【中国安防展览网 智能家居】 2016年,中国服务机器人的企业数量超过了1000家,但是,超过半数的服务机器人企业处于亏损状态。与之形成鲜明对比的是,狗尾草科技、光年无限、智能管家、灵伴科技、优必选科技、Ninebot等众多“年轻的”服务机器人企业不断获得巨额融资,其中,Ninebot的估值已达83.4亿。
有业内人士指出,2016年,中国服务机器人市场已进入盲目发展状态,产品缺乏统一标准,技术含量低,同质化严重,很多企业就是在钻政策的空子捞钱,资本“高烧”严重。在资本泡沫与市场隐患下,中国服务机器人该如何发展,未来的发展之路又在哪里呢?
传感器的发展
传感器是服务机器人的“眼镜”“耳朵”和“鼻子”。借助传感器,服务机器人才能获取到主人的表情、语气、周围环境等各种信息。传感器的精度与集成度,直接决定了机器人认知观察、空间定位与自主规避策略的选择和执行质量。今后,红外传感器、超声波传感器、触觉传感器、视觉传感器等类型的精度越来越高,助力服务机器人完成更复杂的任务,提供更好的的服务。
已经开售的Pepper服务机器人,集成了大量的3D传感器、触摸传感器、缓冲传感器、激光传感器,能识别,并根据人的情绪做出更丰富的、更人性化的反应。
芯片的发展
芯片是服务机器人的“大脑”,承担着数据分析和处理的任务,进而决定了服务机器人的运算能力、移动性能等。今后,服务机器人性能的提升对芯片的要求将越来越高。高通相关负责人表示,不远的将来,机器人对芯片的要求将超过智能手机。
2014年8月,IBM发布的SyNAPSE芯片,集成了“神经元”和“突触”内核,能模拟人类大脑,推动服务机器人向着智能化的方向发展。2016年12月,杜克大学的研究人员研发了一款针对机器人领域的运动规划芯片,将规避物体速度提升了三个数量级。
深度学习算法的进步
服务机器人“服务于人”的本质,决定了服务机器人终将朝着人性化、智能化的方向发展。目前的服务机器人在功能上面临着诸多瓶颈,比如无法很好的理解人类口头语言的复杂性,而深度学习算法将改变这种现状。深度学习算法通过对人脑神经网络的模仿,使服务机器人不再是一个“固化”的工具,而是一个会思考的贴心“秘书”,更好的理解人类的语言、行动和意图,提供更加贴心的服务。
定位导航算法的进步
服务机器人在现实生活中面临的首要问题是如何地规避障碍物体。定位导航算法(SLAM)是服务机器人完成路径规划的基础。通过对算法的优化,服务机器人可以在未知的环境中,更好地生成地图、规划路线,从而安全而地躲避障碍物。
自从谷歌在无人驾驶汽车使用基于激光雷达技术的雷达SLAM算法后,雷达SLAM算法受到了服务机器人企业的关注,该算法具有误差小、指向性好、聚焦性高等优点,在未来将逐渐成为行业内的主流。目前,优地科技等企业已经在旗下的服务机器人中,已全面采用雷达SLAM算法。
综合来看,随着传感器与芯片的发展,深度学习算法和SLAM算法的进步,以及应用领域的细化,服务机器人市场将面临“大洗牌”,服务机器人市场回归理性,更有利于市场的健康发展,也更有利于为消费者带来生活上的便利。