智慧城市网

登录

免疫系统其他荧光物质

上海一研生物科技有限公司

2015/10/16 14:20:15>> 进入商铺

其他荧光物质

1.酶作用后产生荧光的物质某些化合物本身无荧光效应,一旦经酶作用便形成具有强荧光的物质。例如4-甲基伞酮-β-D半乳糖苷受β-半乳糖苷酶的作用分解成4-甲基伞酮,后者可发出荧光,激发光波长为360nm,发射光波长为450nm。其他如碱性酸酶的底物4-甲基伞酮磷酸盐和辣根过氧化物酶的底物对羟基苯乙酸等。

2.镧系螯合物某些3价稀土镧系元素如铕(Eu3+)、铽(Tb3+)、铈(Ce3+)等的螯合物经激发后也可发射特征性的荧光,其中以Eu3+应用zui广。Eu3+螯合物的激发光波长范围宽,发射光波长范围窄,荧光衰变时间长,用于分辨荧光免疫测定。免疫学基本常识:抗原、抗体及单克隆抗体 *,人或动物可以依靠自身的能力抵御某些疾病的侵袭,也有一些疾病可以通过机体自身调控而自愈,这是因为机体内部存在一个免疫系统。免疫系统是由中枢免疫组织(骨髓、胸腺、消化系统免疫组织)和外周淋巴组织(淋巴结和脾脏)的免疫活性细胞(B淋巴细胞、浆细胞),以及由它们产生的多种淋巴因子和抗体所组成。

    免疫系统对外来物质产生一系列反应的过程称为免疫,而这种反应本身则称为免疫应答。能够在机体 中引起特异性免疫应答的物质称为抗原,免疫应答的结果则是刺激机体产生与抗原相对应的特异性抗体和引起细胞免疫。由于免疫应答同时取决于机体,而不仅是进入机体的物质,所以抗原的定义是相对的。由此,按照免疫应答的效果可以将抗原分为*抗原和半抗原:*抗原是指能够直接诱导机体产生特异性免疫应答的一类物质。

    *抗原的分子量都大于5000,其化学成分多为蛋白质或脂多糖,其它如脂蛋白,糖蛋白,多糖体,多肽,核酸等也都是*抗原。半抗原能与抗体特异性结合,但不能激发机体产生抗体,必须与蛋白质(载体)结合后进入机体,才能产生有效的免疫应答。大分子的半抗原在体外能与对应的抗体结合发生可见反应(凝集、沉淀),小分子的半抗原能与对应抗体结合而不出现可见反应。此外,抗原还可以按照自身的物质属性分为可溶性(毒素、异种蛋白)或颗粒性(细菌、细胞)抗原,或按临床意义分为外源性和内源性抗原。

    抗体是在抗原刺激下机体免疫应答的产物。所有抗体都具有与抗原特异性结合的能力。抗体的化学本质是免疫球蛋白即γ-球蛋白。不过只有当免疫球蛋白针对已知抗原时,才能够称这种免疫球蛋白为抗体。免疫球蛋白属于结构牢固的分子物质,可以经受较大变化的环境作用,诸如56℃加温,在室温下较长时期的贮藏,短期高或低pH处理,甚至与去污剂或尿素接触后仍保持其抗体活性。抗体活性是指与抗原特异性结合的能力,即二者之间的特殊亲合力。两者非共价键结合,结合的力包括氢键,静电力,范德华力和疏水结合力。

    抗体抗原之间的反应是可逆的,在适宜的条件下仍可解离而性质不变。机体内约有1亿种不同的B淋巴细胞,每个独立的B淋巴细胞只能接受一种抗原的刺激从而形成分泌一种抗体的能力,因此特异性是免疫应答的*标志。如常识所见,麻疹患者愈后即获得对麻疹的终生免疫,而这并不形成对天花的免疫。抗体抗原特异性结合的本质是抗原决定簇与抗体结合簇的专一适配性,抗原决定簇是指抗原分子上专有的化学基因,可以决定其刺激机体所产生抗体的特异性。

    抗原决定簇与其相对应的抗体结合簇立体构型*相适应。一个抗原分子可带有多个不同的决定簇。抗原分子量愈大,决定簇数量愈多。决定簇数目代表抗原分子的价。抗体结合簇是在抗体分子上与对应的抗原决定簇发生特异性结合的部位,位于Ig分子的抗原结合分段(V段)上,由重链和轻链的一部分可变区构成。其特异性由氨基酸排列顺序决定,约包括5~15个氨基酸。每个单体免疫球蛋白分子如IgG有2个结合簇,IgA是二聚体,有4个结合簇,IgM是五聚体所以有10个结合簇。正常情况下,抗体与抗原在机体内结合后,可以被吞噬、排泄而将抗原清除。如果这种抗原属于外源性致病抗原(细菌、病毒、毒素),可以由此达到杀灭或削弱抗原危害的目的。

    对于内源性抗原,如已经衰退、损伤或突变的异常细胞,也能被及时排除,实现机体自身的免疫调控。当然,在异常情况下,抗体抗原结合后形成的免疫复合物将损伤组织、细胞,引起花粉过敏一类的变态反应或免疫性疾病等不良后果。不过长期以来所谓特异性免疫血清抗体,不论是从人还是从动物获得的,也不论是主动获得还是被动获得的,实际上都是有许多种具有不同特性的抗体所组成的混合抗体。这是因为,进入机体的抗原往往带有若干个抗原决定簇。此外,不同个体对同一抗原决定簇的反应并不相同,即使同一个体不同时间接受抗原刺激后产生的反应也不*一致。

    由于人们无法将体内已受抗原刺激的各种不同的B淋巴细胞克隆区分开,即使在体外能将它们分成单细胞,也无法让其继续生长,增殖并分泌抗体。因此,用常规免疫方法制备的免疫血清抗体只能是数目众多的单克隆抗体的混合物,现在,一般称其为多克隆抗体(PcAb)。这种多克隆抗体存在特异性差、效价低、数量有限、动物间个体差异大,难以重复制备等固有缺陷,许多场合下使用时难尽人意。1975年,英国剑桥大学分子生物学研究室的Kohler和Milstein合作发表了题为“分泌预定特异性抗体的融合细胞的持续培养”的论文(Nature,256:495,1975)。他们将已适应于体外培养的小鼠骨髓瘤细胞与绵羊红细胞免疫小鼠脾细胞(B淋巴细胞)进行融合,发现融合形成的杂交瘤细胞具有双亲细胞的特征:即像骨髓瘤细胞一样在体外培养中能够无限地快速增殖,又能持续地分泌特异性抗体,通过克隆化可使杂交细胞成为单纯的细胞系,由此单克隆系就可以获得结构与各种特性*相同的高纯度抗体,即单克隆抗体(McAb)。

相关技术文章:

当前客户在线交流已关闭
请电话联系他 :