智慧城市网

登录

浅谈费控电表在充电站微电网的应用

发布时间:2024/5/13 13:39:27
浏览次数:48

安科瑞电气有限公司

摘要:现阶段由于充电站内的电费计量模块不能接入电网公司电表系统,电网公司需额外加装电表获取充电数据。设计了一种基于储能电表的充电站,整合电表与充电站的重复功能模块。利用STM32F103C8T6微控制器结合控制器局域网络总线完成充电站与储能电表之间的电气连接和交互控制,并进行了样机开发验证。结果表明相较于传统充电站,基于储能电表的充电站可以简化充电站结构,降低充电站制造、安装成本,更好地实现电动汽车和电网间的互联。

关键词:电动汽车;储能电表;充电站;样机开发

0引言

近年来我国电动汽车(ElectricVehicle,EV)销量持续猛增,根据预测2021年中国新能源汽车销量或将超过180万辆,相较2020年销量同比增长明显。一方面持续增长的EV充电负荷会产生新的充电高峰,对电网运行造成冲击,另一方面,EV充电负荷有很强的时空灵活性和储能特性,可作为电网的后备电源。这就对电网的优化调度和EV的配套充电设施性能提出了更高的要求。为充分发挥EV移动储能特性,缓解EV充电对电网的不利影响,电网公司需要掌握EV的实时充电信息。

现有的充电站内部虽然有独立的电费计量模块,但是由于电网公司对其计量结果并不认可,因此未接入到电网公司电表系统,使得电网公司无法直接获取准确的EV充电数据。现有的解决方案是在充电站端口额外加装一块电网公司电表。由于加装电表和充电站在电费计量功能的重复性,这种方案不仅增加了充电设施体积还增加了充电设施制造、安装成本。

针对此问题,考虑到储能电表以智能芯片为核心,具有电能计量、自动控制、信息交互等功能的特点,本文设计了一种基于储能电表的充电站,对现有储能电表进行改装,拓展充电站控制功能,完成充电站和电表的有机结合。首先在储能电表中加入充电控制模块,然后使用控制器局域网络(ControllerAreaNetwork,CAN)总线连接电表和充电枪等器件,通过储能电表的控制模块对充电过程进行控制,并加装漏电保护装置、急停按钮以及防护外壳等器件。将储能电表拓展为一个完整的充电站。本文介绍了基于储能电表的充电站硬件组成部分,随后进行样机开发验证,之后总结现有方案的不足,展望了技术发展方向。

1基于储能电表的充电站硬件设计

电动汽车要完整的实现充电流程,离不开电能输送装置和电能计量装置。现有的充电站和加装在其端口的电网公司电表有很多相同功能模块,具体如图1所示。

image.png

相同的功能模块不仅使充电设施整体结构更加复杂,更增加了制造成本。在设计过程中考虑基于可接入电网公司系统的储能电表进行拓展,使其具备充电站控制功能,将充电站和电表进行整合。基于储能电表的充电站主要包括储能电表、充电站和前端断路器三部分,其结构如图2所示。从电网侧引入的火线和零线依次接入储能电表和充电站,以便储能电表对于通过火线和零线输入的电能进行采样和计量及充电站向EV输出电能。

image.png

1.1储能电表部分


基于DDSY1352型单相储能智能电能表进行设计开发,储能电表的主控单元采用STM32F103C8T6微控制器作为核心控制器件,控制RS485通信模块、电源模块、液晶显示器(LiquidCrystalDisplay,LCD)、采样模块以及充电站完成相应功能。主控单元组成结构如图3所示。

image.png

电源模块采用MC33063ADR2G电源芯片,经过内置降压器降压后,为其他各功能模块提供电能,其主要电路如图4所示。image.png

通信模块方面,在大数据时代背景下为了设备间的通信,选用无线传输距离更远、传输速率更高、支持多站通信的RS485通信模块。储能电表中的采样模块经过分压电阻、采样电阻、电流互感器获得电压信号、火线电流信号和零线电流信号用于电能计量。LCD屏可显示充电费用、充电时长、充电电量、充电状态等内容。时钟复位电路用以保证时间的准确性。对于电表和充电站之间的连接及控制问题,使用实时性强、传输距离较远、抗电磁干扰能力强的CAN总线连接实现。此外储能电表内部还设有一组继电器,微控制单元(MicrocontrollerUnit,MCU)可通过控制继电器的开合来控制充电站输出电能。在实际应用过程中,MCU根据卡片感应信号、电能电量计量信号以及按键信号等信号,综合判断是否满足设定的充电电量、充电时长、充电费用等结束充电条件或者判断充电站是否出现异常状态。MCU根据判断结果控制继电器的开合。


1.2充电站部分


充电站主要包括充电枪、读卡器、蜂鸣器以及数据传输单元(DataTransferUnit,DTU)四部分。储能电表控制模块中MCU通过相互独立地电连接并控制充电枪和读卡器进而完成对充电站的控制。充电枪的输入端通过线束连接储能电表采样模块输出端的火线和零线,充电枪的输出端(枪头)可插入EV的充电接口。读卡器用于读写用户卡片的卡片感应信息,并且将卡片感应信息转换为相应的卡片感应信号并传输至MCU控制器。充电站还设有一个蜂鸣器用于提示充电站运行状态。基于储能电表的充电站分为单机版和网络版两种版本,其中网络版为了完成数据的无线传输,设有DTU转换器,可插入SIM(SubscriberIdentityModule)卡进而接入无线网络,实现充电站与客户端、服务端的互联。


1.3前端断路器


为了用电的安全性,基于储能电表的充电站设置一个前端断路器。考虑到直流充电站的应用越来越广泛,选择对直流电和交流电都起保护作用,保护范围更*的A型断路器。


2样机开发验证


2.1样机介绍


基于储能电表的充电站电表部分相较于普通电表,设置了双层防护壳以及漏电保护器,进一步提升了安全防护能力。其中*层防护壳带有物理锁,工作人员可使用钥匙开锁打开*层防护壳操作漏电保护器,*层防护壳使用螺丝固定。电表的LCD显示屏具有两种显示模式,即自动循环显示模式和按键触发显示模式。当按键被触发时,形成按键信号的同时背光灯自动启动,便于操作人员进行操作。在用户操作时,蜂鸣器根据用户不同的操作状态、充电站运行状态下发出不同的蜂鸣声。在电表侧面设置一个急停装置,在紧急情况下可按下红色按钮直接断开充电站与电网的连接,及时停止充电,保护用户生命、财产安全,避免事故进一步恶化。在上述经过改装的储能电表基础上采用CAN总线连接充电线枪等器件*终构成完整的充电站,具体如图5所示。

image.png

2.2样机测试


在样机开发后,为验证基于储能电表的充电站安全性,对其进行过压保护、过流保护、短路保护、漏电保护等项目测试,具体测试要求如表1所示。测试结果显示基于储能电表的充电站具备良好的安全性能,可以稳定地为EV充电。

image.png

3实际应用


在实际应用中,单机版基于储能电表的充电站为即插即用式。用户将充电枪插入EV,充电站开始为EV充电直至电满后自动断开。用户可在电表的LCD屏上查询充电状态、充电时间、充电电压、充电电流等具体充电信息。网络版基于储能电表的充电站配备客户端支持用户设定充电需求、查看充电详细信息,用户在充电前需下载相应APP(Application),其使用流程如图6所示。

image.png

用户需要充电时,首先在客户端查看附近可用充电站具体位置。用户到达相应位置后,首先将充电枪插入EV,然后使用APP扫描充电站身二维码设定充电需求,充电APP界面如图7所示,并将启动命令发送至云端服务器。

image.png

具体操作界面如图7a)所示。确认信息后服务器将启动命令发送到充电站DTU,充电站收到指令后启动充电。在充电过程中用户可以查看充电时间、充电电量、充电功率、充电电压等详细充电信息,具体界面如图7b)所示。充电结束后,用户会收到充电结算清单,包括具体充电电量、充电费用等信息,具体如图7c)所示。


在实际应用中,基于储能电表的充电站在保证充电稳定性和充电效率的情况下相较传统充电站额外加装电网公司电表的方式,制造、安装成本可以降低约15%,并且基于储能电表的充电站相较于普通充电站所需空间更小,可适应空间相对狭小的环境。


4 Acrel-2000MG充电站微电网能量管理系统


4.1平台概述


Acrel-2000MG微电网能量管理系统,是我司根据新型电力系统下微电网监控系统与微电网能量管理系统的要求,总结国内外的研究和生产的先进经验,专门研制出的企业微电网能量管理系统。本系统满足光伏系统、风力发电、储能系统以及充电站的接入,*进行数据采集分析,直接监视光伏、风能、储能系统、充电站运行状态及健康状况,是一个集监控系统、能量管理为一体的管理系统。该系统在安全稳定的基础上以经济优化运行为目标,促进可再生能源应用,提高电网运行稳定性、补偿负荷波动;有效实现用户侧的需求管理、消除昼夜峰谷差、平滑负荷,提高电力设备运行效率、降低供电成本。为企业微电网能量管理提供安全、可靠、经济运行提供了全新的解决方案。


微电网能量管理系统应采用分层分布式结构,整个能量管理系统在物理上分为三个层:设备层、网络通信层和站控层。站级通信网络采用标准以太网及TCP/IP通信协议,物理媒介可以为光纤、网线、屏蔽双绞线等。系统支持ModbusRTU、ModbusTCP、CDT、IEC60870-5-101、IEC60870-5-103、IEC60870-5-104、MQTT等通信规约。


4.2平台适用场合


系统可应用于城市、高速公路、工业园区、工商业区、居民区、智能建筑、海岛、无电地区可再生能源系统监控和能量管理需求。


4.3系统架构


本平台采用分层分布式结构进行设计,即站控层、网络层和设备层,详细拓扑结构如下:

5充电站微电网能量管理系统解决方案

5.1实时监测


微电网能量管理系统人机界面友好,应能够以系统一次电气图的形式直观显示各电气回路的运行状态,实时监测光伏、风电、储能、充电站等各回路电压、电流、功率、功率因数等电参数信息,动态监视各回路断路器、隔离开关等合、分闸状态及有关故障、告警等信号。其中,各子系统回路电参量主要有:相电压、线电压、三相电流、有功/无功功率、视在功率、功率因数、频率、有功/无功电度、频率和正向有功电能累计值;状态参数主要有:开关状态、断路器故障脱扣告警等。


系统应可以对分布式电源、储能系统进行发电管理,使管理人员实时掌握发电单元的出力信息、收益信息、储能荷电状态及发电单元与储能单元运行功率设置等。


系统应可以对储能系统进行状态管理,能够根据储能系统的荷电状态进行及时告警,并支持定期的电池维护。


微电网能量管理系统的监控系统界面包括系统主界面,包含微电网光伏、风电、储能、充电站及总体负荷组成情况,包括收益信息、天气信息、节能减排信息、功率信息、电量信息、电压电流情况等。根据不同的需求,也可将充电,储能及光伏系统信息进行显示。

image.png

子界面主要包括系统主接线图、光伏信息、风电信息、储能信息、充电站信息、通讯状况及一些统计列表等。


5.1.1光伏界面

image.png

5.1.2储能界面

image.png

相关技术文章:

分享到: