运动检测技术在数字化监控中的实现和应用
时间:2014-12-05 阅读:2033
关键词:运动检测,背景减除,时间差分,光流法
1引言
随着社会经济和科学技术的飞速发展,人们对安全技术防范的要求也越来越高。二十世纪八十年代末到九十年代中期,随着各种新型安保观念的引入,社会各部门、各行业及居民小区纷纷建立起了各自独立的闭路电视监控系统。然而,传统的视频监控受到当时技术发展水平的限制,监控系统大多只能在现场进行模拟电视监视,视频信息存储到录像带上,如果是监控的地点比较多,要求录像的数据保存时间长,录像带的数量就会变的惊人,整个查询、检索工作变的很复杂,管理运营成本增加,而且还会出现录像带时间长了或转录次数多了时图像质量变差的问题。
随着编解码技术的发展,特别是MPEG4/H264编解码技术的成熟,越来越多的用户采用了数字视频监控系统,实时压缩多路视频,并存储到硬盘上,录像信息以数字形式存放在硬盘上。由于计算机屏幕尺寸有限,在同时显示多路视频时每一路预览的画面都比较小,这一点不利于工作人员及时发现一些细小的隐蔽的安全隐患问题;而且智能化在数字安全防范领域也得到越来越多的应用,在某些监控的场所对安全性要求比较高,需要对运动的物体进行及时的检测和跟踪,因此我们需要一些的图像检测技术来提供自动报警和目标检测。运动检测作为在安防智能化应用zui早的领域,它的技术发展和应用前景都受到关注。
运动检测是指在区域能识别图像的变化,检测运动物体的存在并避免由光线变化带来的干扰。但是如何从实时的序列图像中将变化区域从背景图像中提取出来,还要考虑运动区域的有效分割对于目标分类、跟踪等后期处理是非常重要的,因为以后的处理过程仅仅考虑图像中对应于运动区域的像素。然而,由于背景图像的动态变化,如天气、光照、影子及混乱干扰等的影响,使得运动检测成为一项相当困难的工作。
2运动检测(移动侦测)原理
早期的运动检测如MPEG1是对编码后产生的I帧进行比较分析,通过视频帧的比较来检测图像变化是一种可行的途径。原理如下:
MPEG1视频流由三类编码帧组成,它们分别是:关键帧(I帧),预测帧(P帧)和内插双向帧(B帧)。I帧按JPEG标准编码,独立于其他编码帧,它是MPEG1视频流中*可存取的帧,每12帧出现一次。截取连续的I帧,经过解码运算,以帧为单位连续存放在内存的缓冲区中,再利用函数在缓冲区中将连续的两帧转化为位图形式,存放在另外的内存空间以作比较之用,至于比较的方法有多种。此方法是对编码后的数据进行处理,而目前的MPEG1/MPEG4编码都是有损压缩,对比原有的图象肯定存在误报和不准确的现象。
目前几种常用的方法[1]
1)背景减除(BackgroundSubtraction)
背景减除方法是目前运动检测中zui常用的一种方法,它是利用当前图像与背景图像的差分来检测出运动区域的一种技术。它一般能够提供zui*的特征数据,但对于动态场景的变化,如光照和外来无关事件的干扰等特别敏感。zui简单的背景模型是时间平均图像,大部分的研究人员目前都致力于开发不同的背景模型,以期减少动态场景变化对于运动分割的影响。
2)时间差分(TemporalDifference)
时间差分(又称相邻帧差)方法是在连续的图像序列中两个或三个相邻帧间采用基于像素的时间差分并且阈值化来提取出图像中的运动区域。时间差分运动检测方法对于动态环境具有较强的自适应性,但一般不能*提取出所有相关的特征像素点,在运动实体内部容易产生空洞现象。
3)光流(OpticalFlow)
基于光流方法的运动检测采用了运动目标随时间变化的光流特性,如Meyer[2]等通过计算位移向量光流场来初始化基于轮廓的跟踪算法,从而有效地提取和跟踪运动目标。该方法的优点是在摄像机运动存在的前提下也能检测出独立的运动目标。然而,大多数的光流计算方法相当复杂,且抗噪性能差,如果没有特别的硬件装置则不能被应用于全帧视频流的实时处理。关于光流更加详细的讨论可参见Barron[3]等的文章
当然,在运动检测中还有一些其它的方法,运动向量检测法,适合于多维变化的环境,能消除背景中的振动像素,使某一方向的运动对象更加突出的显示出来,但运动向量检测法也不能地分割出对象。
3运动检测的实现
海康威视作为国内的视音频编解码卡的生产商,依靠中电集团第52研究所强大的技术研发力量,在DSP(数字信号处理器)上完成MPEG4/H264实时编码,在给用户的SDK的接口中,提供了有效的运动检测分析功能。其过程如下:
★信号输入处理模块:标准模拟视频信号(CVBS彩色或黑白)是亮度信号和色度信号通过频普间置叠加在一起,需经过A/D芯片(如philips7113)的解码,将模拟信号转成数字信号,产生标准的ITU656YUV格式的数字信号以帧为单位送到编码卡上的DSP和内存中。
★ICP(ImageCoprocessor图象协处理器)处理模块:YUV数据在DSP中加上OSD(字符时间叠加)和LOGO(位图)等,复合后通过PCI总线送到显存中,供视频实时预览用,还将复合后的数据送到编码卡的内存中,供编码使用。
★ENCODER(编码)模块:将编码卡内存中的YUV数据送到MPEG4/H264编码器中,产生压缩好的码流,送到主机内存中,供录像或网络传输使用。
★MOTIONDETECT处理模块:对编码卡内存中的以帧为单位YUV数据进行处理。
目前,我们采用的是背景差分和时间差分相结合的一种帧差分的算法。通过计算两个有一定时间间隔的帧的象素差分获得场景变化。主要分以下几个步骤:
1)设置运动检测区域等参数:
用户可以通过SDK中的函数,来设置1-99个有效的矩形,还可以设置快速和慢速两种运动检测状态。快速检测是对每隔两帧的两帧数据进行差分运算,慢速检测是指对相隔12帧以上的两帧数据进行差分运算。
2)启动运动检测功能:
因为经过A/D转换后的数据是标准的ITU656YUV4:2:2格式,而人眼又是对亮度zui敏感,为了简化算法,提率,直接对亮度(Y)值进行处理。对于某个检测区域内每个象素点(x,y),T时刻与T-n时刻亮度(Y)的差值为Mx,y(T)=||Yx,y(T)–Yx,y(T-n)||,IF||Mx,y(T)–Mx,y(T-n)||≥TaTHENL=TRUE,得到区域差分系数IMsum=ΣL。
实际决定是否报警,可由整个设置检测区域的IMsum值来判断。
报警=真,IF||ΣIMsum()||≥Tb
假,ELSE
Ta,Tb为适当阈值量。
在CIF格式下,整个画面的分辨率是352*288(PAL),按16*16像素宏块大小来划分整个检测区域,宏块内的像素点是逐点从左到右,从上到下进行差分运算并得到宏块差分系数。整个检测区域又是按16*16的宏块从左到右,从上到下进行扫描,zui后计算出整个区域的差分系数。
3)返回运动检测结果
如果整个区域的差分系数大于设定的阀值,置报警状态并实时将每个检测区域的宏块差分系数都返回。根据预先设置的快速和慢速两种检测状态,对画面进行不间断的分析处理,并返回结果,直到停止运动检测。
如果整个区域的差分系数小于设定的阀值,复位报警状态。
这种基于帧差分算法的运动检测*独立于编码,可以灵活的任意启动停止。实现“动则录,不动则不录”。配合其它接口函数,还可以实现预录像功能,即通常状态下只是进行画面预览监控和运动检测,编码后的数据不写入文件,只暂时写入一个FIFO缓冲区里,一旦发生运动检测报警,可以先将报警之前缓冲区的数据写入文件,然后再实时将编码后的数据写入文件,报警解除后,延时一段时间再停止写文件,转入写缓冲区状态。实现运动检测报警的全过程录像。这样既可以完整获取整个报警事件的过程,又可以节约系统的资源,在相同的存储空间下,可以大大延长保存录像的时间。
4运动检测(移动侦测)技术评估
要对运动检测技术的性能进行评估并不容易,特别是要进行定量的分析时,必须提供一个供作比较、研究的标准视频序列,它应该包括突然场景变化,摄像机移动以及光线明暗变换等特殊效果。检测方案可用多种参数来评估,比如检测成功率、检测失败率等等。在实际应用环境中,可以通过调节阀值对室内普通环境,室外环境获得比较好的监测效果。
还可根据功能实现的方法分类,主要是对软件和硬件两大类实现方法进行一些定性的分析。
采用硬件来实现监测功能,不占用CPU,拥有较快的处理速度,因而可以采用一些较为复杂的算法以获得更为准确的监测结果,并且有很好的实时性。譬如有些摄像机内置VMD(VideoMotionDetector视频移动探测器)电路可以当报警探头使用。检测电路首先会将静态图像贮存起来,之后,如果发现画面的变化量超过了预先设定的值,系统就会发出报警信号,以提醒安防人员或启动录像机。然而硬件实现也意味着较高的成本,而且一旦系统对动态监测功能提出了更新更高的要求,那么原来的硬件系统只能弃而不用,必须采购新的硬件,造成浪费。
用软件实现的监测功能,如果用主机的CPU来完成数值计算,算法不能太复杂,而且计算量不宜太大,否则会影响监控系统其他功能(如显示、录像等)的实现。如果算法下载到DSP上运行,就可以解决这个问题,首先它的功能扩充非常容易,算法的优化不会造成不必要的浪费,可以生成新的微码下载到DSP上,就可以提升性能,并且可以根据用户不同的需求提供一些个性化的功能组合。
我们认为,用DSP加软件来实现系统的动态监测功能,是一种眼光更为长远的选择,而且也是运动检测技术发展的必由之路。实际上我们在Philips的Trimedia1300芯片上完成MPEG4/H264CIF/2CIF编码加运动检测功能,在TI的DM642芯片上完成了MPEG4/H264的4CIF/2CIF/CIF编码加运动检测功能。
参考文献:
1.王亮等“人运动的视觉分析综述”
2.MeyerD,DenzlerJandNiemannH.Modelbasedextractionofarticulatedobjectsinimagesequencesfor
gaitanalysis.In:ProcIEEEInternationalConferenceonImageProcessing,SantaBarbara,California1997,
78-81.
3.BarronJ,FleetDandBeaucheminS.Performanceofopticalflowtechniques.InternationalJournalof
ComputerVision,1994,12(1):42-77.