GPS同步时钟在电力系统中的时间同步解决方法
时间:2016-11-25 阅读:4654
1.1GPS同步时钟
定位系统(Global Positioning System,GPS)由一组美国*在1978年开始陆续发射的卫星所组成,共有24颗卫星运行在6个地心轨道平面内,根据时间和地点,地球上可见的卫星数量一直在4颗至11颗之间变化。
GPS同步时钟是一种接受GPS卫星发射的低功率无线电信号,通过计算得出GPS时间的接受装置。为获得准确的GPS时间,GPS同步时钟必须先接受到至少4颗GPS卫星的信号,计算出自己所在的三维位置。在已经得出具体位置后,GPS同步时钟只要接受到1颗GPS卫星信号就能保证时钟的走时准确性。
作为火电厂的标准时钟,我们对GPS同步时钟的基本要求是:至少能同时跟踪8颗卫星,有尽可能短的冷、热启动时间,配有后备电池,有高精度、可灵活配置的时钟输出信号。
1.2GPS同步时钟信号输出
目前,电厂用到的GPS同步时钟输出信号主要有以下三种类型:
1.2.11PPS/1PPM输出
此格式时间信号每秒或每分时输出一个脉冲。显然,时钟脉冲输出不含具体时间信息。
1.2.2IRIG-B输出
IRIG(美国theInter-Range Instrumentation Group)共有A、B、D、E、G、H几种编码标准(IRIGStandard200-98)。其中在时钟同步应用中使用zui多的是IRIG-B编码,有bc电平偏移(DC码)、1kHz正弦载波调幅(AC码)等格式。IRIG-B信号每秒输出一帧(1fps),每帧长为一秒。一帧共有100个码元(100pps),每个码元宽10ms,由不同正脉冲宽度的码元来代表二进制0、1和位置标志位(P),见图1.2.2-1。
其中的秒、分、时、天(自当年1月1日起天数)用BCD码表示,控制功能码(Control Functions,CF)和标准二进制当天秒数码(Straight Binary Seconds TimeofDay,SBS)则以一串二进制“0”填充(CF和SBS可选用,本例未采用)。
1.2.3RS-232/RS-422/RS-485输出
此时钟输出通过EIA标准串行接口发送一串以ASCII码表示的日期和时间报文,每秒输出一次。时间报文中可插入奇偶校验、时钟状态、诊断信息等。此输出目前无标准格式,下图为一个用17个字节发送标准时间的实例:
1.3电力自动化系统GPS同步时钟的应用
电力自动化系统内有众多需与GPS同步时钟同步的系统或装置,如DCS、PLC、NCS、SIS、MIS、RTU、故障录波器、微机保护装置等。在确定GPS同步时钟时应注意以下几点:(1)这些系统分属热控、电气、系统专业,如决定由DCS厂商提供的GPS同步时钟实现时间同步(目前通常做法),则在DCS合同谈判前,就应进行专业间的配合,确定时钟信号接口的要求。(GPS同步时钟一般可配置不同数量、型式的输出模块,如事先无法确定有关要求,则相应合同条款应留有可调整的余地。)
(2)各系统是否共用一套GPS同步时钟装置,应根据系统时钟接口配合的难易程度、系统所在地理位置等综合考虑。各专业如对GPS同步时钟信号接口型式或精度要求相差较大时,可各自配置GPS同步时钟,这样一可减少专业间的相互牵制,二可使各系统时钟同步方案更易实现。另外,当系统之间相距较远(例如化水处理车间、脱硫车间远离集控楼)时,为减少时钟信号长距离传送时所受的电磁干扰,也可就地单设GPS同步时钟。分设GPS同步时钟也有利于减小时钟故障所造成的影响。
(3)IRIG-B码可靠性高、接口规范,如时钟同步接口可选时,可优先采用。但要注意的是,IRIG-B只是B类编码的总称,具体按编码是否调制、有无CF和SBS等又分成多种(如IRIG-B000等),故时钟接收侧应配置相应的解码卡,否则无法达到准确的时钟同步。
(4)1PPS/1PPM脉冲并不传送TOD信息,但其同步精度较高,故常用于SOE模件的时钟同步。RS-232时间输出虽然使用得较多,但因无标准格式,设计中应特别注意确认时钟信号授、受双方时钟报文格式能否达成一致。
(5)火电厂内的控制和信息系统虽已互连,但因各系统的时钟同步协议可能不尽相同,故仍需分别接入GPS同步时钟信号。即使是通过网桥相连的机组DCS和公用DCS,如果时钟同步信号在网络中有较大的时延,也应考虑分别各自与GPS同步时钟同步。
二、中新创DNTS时钟同步方式
中新创科采用*的算法和高可靠的器件生产的DNF4533系列时间频率产品可满足现在和将来对时间和频率的苛求。
DNF4533采用高精度授时型GPS接收机和低相噪、低漂移的双恒温槽高稳晶振,采用频率测控技术,对晶体振荡器的输出频率进行精密测量与校准,使GPS驯服晶振的输出频率同步在GPS系统上
DNF4533作为基准时钟源(PRS)使用。它能提供自我完善性监控的、高稳定的一级时钟同步信号。输出2048kb/s、2048kHz、1PPS及IRIG-B信号。符合ITU-TG.811要求的1级基准时钟源。
作为再定时设备使用。再定时功能是把本设备跟踪GPS(或地面参考)良好的定时参考信号与业务码流信号合成在一起,使业务码流能很好地传递定时参考信号,如果设备自身性能降质或者掉电,设备自动启动直通模式。
作为CDMA时钟源。它能为CDMA基站提供钟源。可提供19.6608Mhz方波信号,PP2S信号,10M正弦信号或方波信号。可定制信号:16.384MHz,14.4MHz。(为数字集群的应用)
DNF4533GPS同步时钟源产品已广泛应用于电信、移动通信、电力与交通、网络、数字广播、计量测试、天文观测、航天测控、*工等部门。
从上述TXP时钟同步方式及时钟精度可以看出,TXP系统内各进钟采用的是主从分级同步方式,即下级时钟与上级时钟同步,越是上一级的时钟其精度越高。
三、时钟及时钟同步误差
3.1时钟误差
*,计算机的时钟一般都采用石英晶体振荡器。晶振体连续产生一定频率的时钟脉冲,计数器则对这些脉冲进行累计得到时间值。由于时钟振荡器的脉冲受环境温度、匀载电容、激励电平以及晶体老化等多种不稳定性因素的影响,故时钟本身不可避免地存在着误差。例如,某精度为±20ppm的时钟,其每小时的误差为:(1×60×60×1000ms)×(20/10.6)=72ms,一天的累计误差可达1.73s;若其工作的环境温度从额定25℃变为45℃,则还会增加±25ppm的额外误差。可见,DCS中的时钟若不经定期同步校准,其自由运行一段时间后的误差可达到系统应用所无法忍受的程度。
随着晶振制造技术的发展,目前在要求高精度时钟的应用中,已有各种高稳定性晶振体可供选用,如TCXO(温度补偿晶振)、VCXO(压控晶振)、OCXO(恒温晶振)等。
3.2时钟同步误差
如果对类似于TXP的时钟同步方式进行分析,不难发现时钟在自上而下的同步过程中产生的DCS的对时误差可由以下三部分组成:
3.2.1GPS同步时钟与卫星发射的UTC(世界协调时)的误差
这部分的误差由GPS同步时钟的精度所决定。对1PPS输出,以脉冲前沿为准时沿,精度一般在几十ns至1μs之间;对IRIG-B码和RS-232串行输出,如以中科院国家授时中心的地钟产品为例,其同步精度以参考码元前沿或起始相对于1PPS前沿的偏差计,分别达0.3μs和0.2ms。
3.2.2DCS主时钟与GPS同步时钟的同步误差
DCS网络上的主时钟与GPS同步时钟通过“硬接线”方式进行同步。一般通过DCS某站点内的时钟同步卡接受GPS同步时钟输出的标准时间编码、硬件。例如,如在接受端对RS-232输出的ASCII码字节的发送延迟进行补偿,或对IRIG-B编码采用码元载波周期计数或高频销相的解码卡,则主时钟与GPS同步时钟的同步精度可达很高的精度。
3.2.3DCS各站点主从时钟的同步误差
DCS主时钟与各站点从时钟通过网络进行同步,其间存在着时钟报文的发送时延、传播时延、处理时延。表现在:(1)在主时钟端生成和发送时间报文时,内核协议处理、操作系统对同步请求的调用开销、将时间报文送至网络通信接口的时间等;(2)在时间报文上网之前,还必须等待网络空闲(对以太网),遇冲突还要重发;(3)时间报文上网后,需一定时间通过DCS网络媒介从主时钟端传送到子时钟端(电磁波在光纤中的传播速度为2/3光速,对DCS局域网而言,传播时延为几百ns,可忽略不计);(4)在从时钟端的网络通信接口确认是时间报文后,接受报文、记录报文到达时间、发出中断请求、计算并校正从时钟等也需要时间。这些时延或多或少地造成了DCS主从时钟之间、从从时钟之间的时间同步误差。
当然,不同网络类型的DCS、不同的时钟通信协议和同步算法,可使网络对时的同步精度各不相同,上述分析只是基于一般原理上探讨。事实上,随着人们对网络时钟同步技术的不懈研究,多种复杂但又、高的时钟同步协议和算法相继出现并得到实际应用。例如,互联网上广为采用的网络时间协议(NetworkTimeProtocol,NTP)在DCS局域网上已能提供±1ms的对时精度(如GE的ICS分散控制系统),而基于IEEE1588的标准时间协议(Standard Precision Time Protocol,PTP)能使实时控制以太网上的主、从时钟进行亚微秒级同步。
四、时钟精度与SOE设计
虽然DCS的普通开关量扫描速率已达1ms,但为满足SOE分辨率≤1ms的要求,很长一段时间内,人们都一直都遵循这样的设计方法,即将所有SOE点置于一个控制器之下,将事件触发开关量信号以硬接线接入SOE模件,其原因就在于不同控制器其时钟存在着一定的误差。关于这一点,西门子在描述其TXP系统的FUNB模件分散配置的工程实际情况来看,由于时钟不能同步而无法做到1msSOE分辩率,更有甚至因时钟相差近百ms,造成SOE事件记录顺序的颠倒。
那么,如何既能满足工程对于SOE分散设计的要求(如设置了公用DCS后,机组SOE与公用系SOE应分开,或希望进入控制器的MFT、ETS的跳闸信号无需经输出再返至SOE模件就能用于SOE等),又不过分降低SOE分辨率呢?通过对DCS产品的分析不难发现,通常采用的办法就是将控制器或SOE模件的时钟直接与外部GPS同步时钟信号同步。例如,在ABBSymphony中,SOEServerNode(一般设在公用DCS网上)的守时主模件(INTKM01)接受IRIG-B时间编码,并将其产生的RS-485时钟同步信号链接到各控制器(HCU)的SOE时间同步模件(LPD250A),其板载硬件计时器时钟可外接1PPM同步脉冲,每分钟自动清零一次;再如,MAX1000+PLUS的分散处理单元(DPU4E)可与IRIG-B同步,使DPU的DI点可同时用做SOE,由于采用了1PPM或RS-485、IRIG-B硬接线时钟“外同步”,避开了DCS时钟经网络同步目前精度还较差的问题,使各受控时钟之间的偏差保持在较小的范围内,故SOE点分散设计是可行的。
由此可见,在工程设计中应结合采用的DCS特点来确定SOE的设计方案。不可将1ms的开关量扫描速率或1ms的控制器(或SOE模件)时钟相对误差等同于1ms的SOE分辨率,从而简单地将SOE点分散到系统各处。同时也应看到,SOE点“分散”同“集中”相比,虽然分辨率有所降低,但只要时钟相对误差很小(如与1ms关一个数量级),还是完满足电厂事故分析实际需要的