安科瑞/Acrel 品牌
生产厂家厂商性质
无锡市所在地
智能滤波补偿装置治理谐波当负载产生谐波时,有源电力滤波器检测出负载电流中的谐波分量,将其反性后作为指令信号,由补偿电流发生电路产生的补偿电流,即与负载电流中谐波分量大小相等、方向相反,在连接点相互抵消,达到补偿谐波的目的,使得电源电流中只含有基波,不含谐波。
低压配电网的谐波治理措施,低压配电网的谐波治理措施主要有两个:一是主动措施,即从谐波源本身出发,使其不产生谐波或降低其输出的谐波的含量;二是被动措施,即通过安装电力滤波器,滤掉谐波源产生的谐波,或者阻碍电力系统的谐波流入用户电网。主动措施包括多脉冲整流技术、脉宽调制技术(PWM)、矩阵变换器、四象限变流器等。采用主动措施可以有效限制谐波的产生,但由于非线性负载的多样性,通过主动措施*消除谐波电流是不可能的。被动措施主要有PPF以及近几年来兴起的APF。PPF因其成本低、结构简单和维护方便的原因得到了广泛应用,但其有些缺点是难以克服的,如只能滤除特定频率的谐波、容易和系统发生并联谐振、对于波动性负载滤波效果不理想等。APF具有响应速度快、滤波能力强、安装灵活、方便扩展的特点,近几年来得到了越来越广泛的应用。
产品简介
功能:
ANAPF系列有源电力滤波器通过电流互感器采集系统谐波电流,经控制器快速计算并提取各次谐波电流的含量,产生谐波电流指令,通过功率执行器件产生与谐波电流幅值相等方向相反的补偿电流,并注入电力系统中,从而抵消非线性负载所产生的谐波电流。
应用范围:
适用于并联在含谐波负载的低压配电系统中,能够对动态变化的谐波电流进行快速实时的跟踪和补偿。
订货范例:
具体型号:ANAPF150-380/BGL
技术要求:谐波补偿电流150A,线电压等级380V 。
接线方式:三相四线
安装方式:立柜式
互感器接线方式:负载侧
2 技术参数
3 产品选型
4 应用案例
ANAPF在低压配电系统中的具体应用
上海某中小型企业,变压器容量为150kVA,到了冬季当有大量的空调同时打开时,断路器就会跳闸,严重影响了公司的日常运营。经调查该公司有大量节能灯、变频空调、计算机、打印机和电梯等非线性负载,正是这些非线性负载降低了变压器的出力。研究表明谐波电流会引起变压器外壳外层硅钢片或某些紧固件发热,可能导致局部过热的发生,使绝缘介质老化加速,导致绝缘损坏,缩减变压器使用寿命。谐波对变压器的使用效率产生重大的负面影响。经实际勘测分析发现该公司变压器裕量虽不大,但如果把谐波降低到符合国家标准规定的范围内,就可以满足日常的供电需求,没有必要扩容。对公司的用电负荷进行调查分析,发现照明回路负荷较大,并且因为照明回路使用了大量的节能灯,使该回路谐波含量比较高,是降低变压器出力的主要原因。
用FLUKE 434对照明回路进行测量得到电流波形如图1所示。由图可知,电流波形与理想的正弦波相去甚远,畸变较为严重。电流波形的畸变会导致电压波形的畸变进而影响到其他设备如计算机的正常运转。同时N相电流达37A,电流不平衡问题也比较突出,存在较大的用电隐患。
分次谐波含量数据如图2所示。由图可知,A相、B相、C相的THDi分别为19.7%、27.8%、26.6%,谐波污染非常严重,存在安全隐患。
图1:照明回路电流波形 图2:照明回路分次谐波含量数据
根据谐波含量,选用额定容量为50A的ANAPF对照明回路进行单独补偿,治理后得到的电流波形图、分次谐波含量数据分别如图3、图4所示。
图3:治理后照明回路电流波形 图4:治理后照明回路分次谐波含量数据
从图3、图4可以看出,治理后电流波形接近于的正弦波,电流的畸变得到了有效的控制;中性线电流也从37A降低到5A,消除了因中性线电流过大而引起的火灾隐患;电流的谐波含量也从20%左右降到了3%左右,谐波含量大为降低,已符合GB T14549-1993《电能质量 公用电网谐波》规定标准。
ANAPF有效的降低了THDi,同时治理了三相不平衡,减少了中性线流过的电流,有效的提高了各项电能指标,使各种用电设备能正常稳定运行,延长了设备的使用寿命,减少了因电路故障而产生的损失。
对于功率较大(例如22kW以上)的谐波源(变频 器、UPS及中频炉等),在这些设备的电源入口处治理。在分配电柜,根据谐波电流的大小,决定是否需要采取治理,如果谐波电流畸变率超过20%,建议进行治理,使其达到10%以下。在总配电柜(变压器的下端),根据谐波电流的情况,决定是否需要进行治理。浦常,以供电企业的标准作为依据,如果谐波电流超过标准要求就进行治理,否则不用治理。
滞环比较跟踪控制,滞环电流控制具有简单灵活,性能与系统参数无关, 动态响应速度快,鲁棒性好,精度较高等优点,因此在跟踪谐波电流或电压的控制方面应用较多。把补偿电流的指令信号ic*和实际补偿电流信号ic 进行比较,得到两者的差值Δic,将其差值Δic作为滞环比较器的输入,通过滞环比较器产生控制主电路中开关通断的PWM控制信号,该信号经驱动电路来控制开关的通断, 从而达到控制实际补偿电流i 跟踪指令电流i *变化的目的。
智能滤波补偿装置治理谐波
理想的供电系统,电流和电压都是正弦波。在线性负载上加上正弦波电压时,电流也是同频率的正弦波,但在非线性负载上施加正弦波电压时将偏离正弦波形,引起谐波。从严格的意义来讲,谐波是指电流中所含有的频率为基波的整数倍的电量,一般是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的产生的电量。谐波产生的原因主要是由于正弦电压加压于非线性负载,基波电流发生畸变产生谐波。主要非线性负载有UPS、开关电源、整流器、变频器和逆变器等。
目前该公司较多的使用变频装置、电脱盐、电除尘、电解槽、电加热器、开关电源和UPS等许多电力电子设备及大电动机、变压器等大部分感性负荷,造成无功出力不足、功率因数较低的同时,也给电网造成了大量的谐波污染。运行经验表明,以上这些设备挂网运行,将导致供电系统谐波污染严重和无功损耗发热,诱发电气设备事故,造成设备停电、装置停车 敞发生。因此,开创性地将有源滤波及智能电容技术结合起来利用有源滤波器良好的谐波治理能力和无功补偿电容器补偿容量大的优点,消除谐波的同时精细地补偿无功不但对保障供电系统的安全稳定性,提高电能质量,降低电能损耗等都具有非常重要的意义,而且研究在石化企业电力设备上应用谐波治理及无功补偿技术,能够为石化企业电力设备开发出性价比高、效果良好、安全便捷和稳定性好的节能降耗技术,达到故障预警、安全增效等多重目的。