如今国内语音识别行业发展是何局势?
- 来源:爱分析ifenxi
- 2017/2/24 15:24:0239095
汽车
由于人在车内双手和双眼被占用,而需求又十分明确,因此智能语音成了这一场景下合适的交互方式。
智能语音在车内的应用主要以车载导航为主,辅以查询和用车。对于业界热炒的“以语音为入口连接各种服务,从而构建车联网生态”的畅想,目前看来还距离较远。核心困难在于,整个行业尚未找到车内场景下用户的刚性、高频需求。或许等到自动驾驶汽车普及之后,人的双手双眼以及大脑解放出来,才有条件搭建包含各种服务的车内生态。
对于涉足汽车领域的语音企业来说,当前重要的是,把导航等刚性需求的体验做到位,再去考虑如何延伸服务。
家居
在家居场景下,智能语音应用主要围绕智能电视、音箱、家用机器人展开,解决的需求包括搜片、听歌、提醒、简单交互、应用调取等。
亚马逊Echo面世,带动了语音交互在家居领域应用的热潮。从2014年下半年至今,Alexa平台应用数从初20多个增加到7000多个,并在过去半年内以每月1000个左右的速度增加。据CIRP报告估计,截止2016年11月,Echo累计销量超过510万台,2016年Q1-Q3共销售约200万台,较前三季度增长18%(2015Q2-Q4数据来源于Mary Meeker《2016互联网趋势报告》)。
图:亚马逊Echo销量估计,来源:MaryMeeker, 2016 Internet Trends Report
家居环境的天然特性使得语音成为合适的交互方式,类似于Echo Alexa这样的平台将吸引越来越多的应用,不断丰富其产品功能,完整智能家居生态环境。随着用户习惯不断养成,这样的“智能家居控制中心”和“流量入口”有望快速普及,成为iPhone级爆款。不过,由于语音是一种全新的交互方式,除了技术所需的提升,各类应用在开发设计时还将面临用户体验和价值考量等全新挑战。
除了音箱、台灯等小家电智能产品,家用机器人也成了创业者争相押注的对象。拟生物形态智能产品的火热某种程度上承载着人类对于机器人的美好愿望,但创业者还是要从价值和实用性角度考量其产品形态的设计逻辑。终哪种形态的智能产品会“笑到后”,还得市场说了算,但语音会成为家居交互主流这一点,已经毋庸置疑。
值得一提的是,一些传统家电,如空调、冰箱、洗衣机、抽油烟机等,也开始配备语音交互功能,事实上并不理性。无论是控制开关、调节设置,还是对话沟通,从现有技术水平所能解决的需求和效率来看,都价值有限,或许等到语音交互成本下降,效率提升,才有可能在各种家电终端上普及。不过更多行业人士倾向于认为,智能家电的语音控制要么通过一个中枢设备来进行,要么通过房屋前装分体式设计来实现。
除了以上三大领域,商用服务机器人的逐渐成熟,有望为语音语义在商场、医院等各类服务场所开辟新的应用领地,点餐机、订票机等传统形态服务设备也将会以语音这种全新的交互方式服务大众,市场之广阔,可想而知。
B端应用:提升效率、解放人力,深耕垂直行业是根本
智能语音语义在B端的应用主要集中于客服、教育、医疗、旅游等领域。
客服
客服作为劳动密集型行业,对于一些大公司来说,成本依然很高。智能机器人客服的出现可以在很大程度上解决简单、重复性工作,帮助企业节省人工和坐席成本,提升运营效率。
由于客服问题主要聚焦在特定产品或单一垂直领域,因此需要企业拥有完整的结构化知识库,帮助机器人更好地查询和匹配问答内容。目前,按照行业平均水平,机器人客服可以解决70%左右问题,其余由人工处理。
机器人客服是主要战场。从成立较早的智臻智能(小i机器人)、捷通华声,到后来的图灵机器人、智齿科技、蓦然认知,以及从云客服转型智能客服的UDesk等,都希望在智能客服市场分得一杯羹。
由于业务量大、付费能力强,且知识库完整,金融、电信、航空公司等大型客户成了智能客服的主要应用群体。要更好地满足这些群体的需求,各家公司需要针对不同行业对算法和技术做相应的改进和优化,在实际应用中,用更大的数据量去提升产品体验和效果。
教育
教育领域,包括中英文口语评测,以及部分教育机器人的交互功能。科大讯飞作为智能语音和教育市场的,通过为一些全国性考试提供技术支持,已经成为中英文口语测评方面的主要玩家。2016年底,科大讯飞与新东方联合成立东方讯飞,用新东方的数据+讯飞的技术,推动教育、培训、学习的智能化进程,智能语音测评技术有望在其中发挥重要作用。
在讯飞的广泛布局之下,脱胎于老牌语音公司思必驰,后被网龙(HK 00777)全资收购的驰声科技,也通过2B2C的模式,在培训、出版、考试服务、教育软硬件等领域持续发力,欲通过中高考口语考试解决方案、人机英语对话模拟考辅系统打入学校市场。
体制之外,以英语流利说为代表的口语评测应用也广受C端用户好评。依靠四年时间积累的3000万用户数据、500万小时练习录音,流利说于2016年推出可替代口语老师的自适应移动英语课堂“懂你英语”,加上辅助在线答疑及外教上课,有望一步实现自适应口语学习的商业化落地。
智能语音在教育领域的价值,一方面在于提高教师工作效率,另一方面在于帮助学生提升学习效果。通过大量语音数据的积累,并和后端大数据分析、机器学习相结合,智能语音有望在机器辅助学习和自适应学习方面发挥重大作用,为教育行业带来颠覆性变革。
医疗
医疗领域的应用目前主要是电子病历录入。医生在临床诊断时使用专业麦克风,可将诊断信息实时转化成文字,录入医院HIS(Hospital Information System)系统,方便后续查询和问答,提高医生工作效率。
由于专业性强、识别难度高,国外语音巨头Nuance早主要是通过后台人工转写,而随着语音识别技术有了突破性进展,国内智能语音在国内医疗领域的应用也开始起步,讯飞和云知声是该领域典型代表。
讯飞正在和安徽省立医院、上交大附属第六医院南院以及北大口腔医院等合作,让医生使用定制麦克风,通过定向和降噪,先将语音转成文字,再用NLP技术对文字进行结构化处理(比如分段),医生只需再做简单修改即可形成电子病历。此外,讯飞还在医疗影像翻译、医疗大数据分析方面展开布局,欲将AI技术广泛用于智慧医疗领域。
云知声的智能医疗语音录入系统也已经在协和医院、西京医院上线。同时,其医疗语音技术还上线了“平安好医生”20多个科室,让医生通过语音方式,更便捷地与患者进行线上沟通。
当前,语音在医疗领域的应用还处于语音转文字的初级阶段,在实际使用中的部分识别错误还需要医生手动修改。不过,以语音为入口所积累的大量医疗数据会在未来产生巨大价值。此外,随着医疗技术和语音分析技术的进步,通过声音诊断病情也将成为可能。南加州大学已经开发出一套新的机器学习工具,可以通过患者的特定语音特征,辅助医生诊断抑郁症等心理疾病。
金融
由于金融行业带有明显的客户服务属性,加上完整而庞大的业务及数据积累,因此成为智能语音语义的重要应用阵地。当前,一些商业银行已经通过使用语音识别技术,实现了语音导航、语音交易、业务办理等基础服务。
除了在线客服和呼叫中心,智能语音技术还被应用于语音/语义分析、大数据挖掘、身份认证等领域。捷通华声的智能语音分析系统就通过将语音数据转化为文本,而后建立语义索引、自动提取特征关键词,再对文本数据进行自动分类,生成结构化的客服大数据,为银行等金融机构提供客服质检、大数据挖掘与分析服务。
此外,随着声纹识别技术的进步,智能语音也将被应用于金融领域的身份认证,通过语音认证实现业务办理、支付等功能,未来有望和指纹、虹膜、人脸等其他生物特征识别方式一起使用。
除了上述四大领域,智能语音语义技术也逐渐渗透到安防、旅游、法律等行业,在效率效果提升、解放人力等方面发挥越来越重要的作用。