$item.Name

首页>仪器仪表>生命科学仪器>光合仪

易科泰藻类高通量光合作用测量系统

型号
北京易科泰生态技术有限公司

初级会员2年 

生产厂家

该企业相似产品

叶绿素荧光成像,多功能高光谱成像,高通量表型成像分析,FMS能量代谢测量系统

北京易科泰生态技术有限公司成立于2002年,为国家高新技术企业,总部位于北京中关村翠湖云中心,致力于生态、农业、健康科学研究与监测/检测技术方案推广、研发与应用服务,营业范围主要包括:

1)  自然科学研究与实验发展,生态-资源-环境实验研究与监测/检测技术

2)  农业科学研究与实验发展,作物表型组学研究技术、种质资源检测鉴定与保护技术等

3)  医学研究与实验发展,生物医学研究技术、能量代谢测量技术、中医药研究技术等

4)  技术开发、转让、咨询、服务及国际仪器设备营销

易科泰生态技术公司设立有如下研究实验发展机构:

1)  EcoTech®实验室(北京),配备有国际实验研究检测技术仪器装备,如叶绿素荧光成像系统、多光谱荧光成像系统、高光谱成像系统、红外热成像仪、动物呼吸代谢测量系统、人体能量代谢测量系统等,可提供作物表型分析与种质资源检测鉴定、生物安全与生物检测、食品检测、中药品质检测鉴定、动物能量代谢测量等实验分析服务与合作研究。

2)  易科泰光谱成像与无人机遥感技术研究中心(西安),致力于光谱成像特别是高光谱成像创新应用研发集成、近地遥感与无人机遥感技术研发集成等。

3)  阿拉善蒙古牛生态牧业研究院,致力于以国家畜禽遗传资源保护物种蒙古牛为旗舰的农业种质资源保护与可持续利用、草原生态保护与可持续利用研究与实验发展。

4易科泰生态医学研究所(内蒙阿拉善),致力于民族医学特别是中医、蒙医与生态健康研究实验发展

易科泰生态技术公司与全球几十家国际科研仪器技术公司建立有代理关系或合作关系,如美国Sable公司(动物能量代谢测量研究)、捷克PSI公司(叶绿素荧光技术、植物表型分析技术等)、芬兰Specim公司(高光谱成像技术)、法国YellowScan公司(激光雷达技术)、欧盟CEITEC研究中心(LIBS技术)、英国ADC公司(植物光合作用)等,与国际合作引进推广了大量优异的研究技术和仪器技术,为我国农业、林业、水资源管理、生态环境研究及医学健康等领域科技进步提供了有力的技术支撑。公司还与捷克PSI植物与藻类表型分析研究中心、欧盟CEITEC激光光谱学实验室、美国Sable公司动物能量代谢实验室、西班牙BCN无人机遥感中心建立合作关系,致力于国际技术的推介、学术交流、培训、人才培养(如博士生培养等)、研究合作等。

“工欲善其事,必先利其器”,易科泰生态技术公司将秉承“利其器,善其事”的经营理念,为国内生态、农业、健康研究与事业发展提供优异技术服务与技术方案。



详细信息

  藻类高通量光合作用测量系统具备叶绿素荧光成像和光合放氧测量的功能,通过测定微藻的叶绿素荧光参数和气体交换参数,评价其光化学转化效率和光合速率,全面评估微藻光合作用物质和能量的转化。系统具备快速、高通量的特点,可同时对96个样品进行测量。系统广泛用于藻类光合生理研究、藻类突变体筛选、藻类遗传改良、藻类养殖、污水处理、生物燃料和生物肥料的制造等研究和应用领域。  

易科泰藻类高通量光合作用测量系统

藻类叶绿素荧光成像仪及其成像图 


易科泰藻类高通量光合作用测量系统 

四肩突四鞭藻(绿藻)的光合速率(A)和呼吸速率(B)随温度的变化(Bernhardt et al., 2017)

 

功能特点

· 高通量:近百个样品同时测量

· 全面评价光合作用:藻类叶绿素荧光参数和光合速率均可测定

· 非侵入性和非破坏性测量

· 系统简单易用

· 氧气测量高精度、高可靠性、低功耗、低交叉敏感性、快速响应时间


技术参数

1. 测量参数:Fo, Fo’, Fs, Fm, Fm’, Fp, FtDn, FtLn, Fv, Fv'/ Fm', Fv/ Fm, Fv', Ft,ΦPSII, NPQ_Dn, NPQ_Ln, Qp_Dn, Qp_Ln, qN, qL, QY, QY_Ln, Rfd, ETR等50多个叶绿素荧光参数以及光合速率、呼吸速率

2. 可同时对近百个藻类样品进行测量

3. 叶绿素荧光成像单元具备完备的自动测量程序(protocol),可自由对自动测量程序进行编辑,包括Fv/Fm、Kautsky诱导效应、荧光淬灭分析、光响应曲线LC。

4. 叶绿素荧光数据分析模式:具备在低信噪比的情况下使用的“信号平均再计算”模式,以过滤掉噪音带来的误差,适用于低浓度的藻类样品。

5. 叶绿素荧光成像分析软件功能:具Live(实况测试)、Protocols(实验程序选择定制)、Pre–processing(成像预处理)、Result(成像分析结果)等功能菜单

6. 叶绿素荧光成像预处理:程序软件可自动识别多个植物样品或多个区域,也可手动选择区域(Region of interest,ROI)。手动选区的形状可以是方形、圆形、任意多边形或扇形。软件可自动测量分析每个样品和选定区域的荧光动力学曲线及相应参数,样品或区域数量不受限制(>1000)

7. 氧气检测技术:光纤氧传感器技术。

8. 测量呼吸室:透明聚苯乙烯材质,支持预消毒处理,可重复使用。

9. 氧气测量主机:单个重670 g,162 x 102 x 32 mm

10. 氧气主机内置温度传感器:0-50°C,分辨率0.012°C,精度±0.5°C

11. 氧气主机内置压强传感器:300-1100mbar,分辨率0.11mbar,精度±6mbar

12. 氧气蕞大采样频率:单通道激活时可达10-20次每秒

13. 氧气测量精度:±0.1% O2@1% O2或±0.05 mg/L@0.44 mg/L

14. 氧气测量分辨率:0.01% O2@1% O2或0.005 mg/L@0.44 mg/L

15. 测量通道数:96

 

应用案例

1. Perin等人采用藻类高通量光合作用测量系统初步筛选微拟球藻(Nannochloropsis gaditana)的高光效突变体。研究小组使用化学引变剂乙基甲烷磺酸盐(EMS)诱导突变和插入突变两种方式生成突变体库,使用叶绿素荧光成像技术检测其光合活性的可能变化,使用的叶绿素荧光参数包括蕞小荧光F0、蕞大光化学效率Fv/Fm、有效光化学效率ΦPSII、光系统调节能力NPQ(Perin et al., 2015)。

 

易科泰藻类高通量光合作用测量系统 

微拟球藻荧光强度筛选

左-F0(红圈为野生型,白圈为筛选出的、荧光过低或过高的突变体);右:叶绿素荧光的定量(红点代表野生型,篮圈代表筛选出的突变体,绿色三角表示平均值±标准差)(Perin et al., 2015)


2. 不列颠哥伦比亚大学生物多样性研究中心使用了藻类高通量光合作用测量系统评估了全 球变暖对斜生栅藻(Scenedesmus obliquus)光合速率和呼吸速率的影响,发现两者均对测试温度表现出一定的可塑性。不同选择温度(12℃、18℃)的栅藻光合速率无差异;而高温选择(18℃)的栅藻相对低温选择(12℃)的栅藻,具有更高的呼吸速率(Tseng et al., 2019)。


易科泰藻类高通量光合作用测量系统 

不同温度选择(12℃、18℃)的斜生栅藻光合速率(左)和呼吸速率(右)随测试温度的变化(Tseng et al., 2019)

 

参考文献

1. Claudi, R., Alei, E., Battistuzzi, M., Cocola, L., Erculiani, M.S., Pozzer, A.C., Salasnich, B., Simionato, D., Squicciarini, V., Poletto, L., La Rocca, N., 2021. Super-Earths, M Dwarfs, and Photosynthetic Organisms: Habitability in the Lab. Life 11(1): 10

2. Dann, M., Ortiz, E.M., Thomas, M., Guljamow, A., Lehmann, M., Schaefer, H., Leister, D., 2021. Enhancing photosynthesis at high light levels by adaptive laboratory evolution. Nat. Plants 7, 681–695.

3. Gavel, A., Maršálek, B., 2004. A novel approach for phytotoxicity assessment by CCD fluorescence imaging. Environmental Toxicology 19, 429–432.

4. Herdean, A., Hall, C., Hughes, D.J., Kuzhiumparambil, U., Diocaretz, B.C., Ralph, P.J., 2023. Temperature mapping of non-photochemical quenching in Chlorella vulgaris. Photosynth Res 155, 191–202.

5. Macário, I.P.E., Veloso, T., Frankenbach, S., Serôdio, J., Passos, H., Sousa, C., Gonçalves, F.J.M., Ventura, S.P.M., Pereira, J.L., 2022. Cyanobacteria as Candidates to Support Mars Colonization: Growth and Biofertilization Potential Using Mars Regolith as a Resource. Front Microbiol 13, 840098.

6. Nowicka, B., 2020. Practical aspects of the measurements of non‐photochemical chlorophyll fluorescence quenching in green microalgae Chlamydomonas reinhardtii using Open FluorCam. Physiologia Plantarum 168, 617–629.

7. Perozeni, F., Stella, G., Ballottari, M., 2018. LHCSR Expression under HSP70/RBCS2 Promoter as a Strategy to Increase Productivity in Microalgae. IJMS 19, 155.

8. Tseng, M., Bernhardt, J.R., Chila, A.E., 2019. Species interactions mediate thermal evolution. Evolutionary Applications 12, 1463–1474.

9. Bernhardt, J.R., Sunday, J.M., O’Connor, M.I., 2017. An empirical test of the temperature dependence of carrying capacity. bioRxiv, 210690.

相关技术文章

同类产品推荐

相关分类导航

产品参数

规格类型

企业未开通此功能
详询客服 : 0571-87858618
提示

请选择您要拨打的电话: