智慧城市网

登录

AI下半场 “生态”和“连接”是大势

来源:安天下 作者:安天下
2019/11/15 9:25:0439497
  【安防展览网 企业关注】2019安博会,关键词是“生态、平台、开放、实战、场景”,但同时具备这些五大要素的公司寥寥可数。
 


 

  各家公司都喊出不同的口号,纷纷攘攘,好不热闹。其中AI+生态、开放、平台出现频率颇高。什么是生态,生态如何嵌入行业?答案不一,生态可大可小,如图,行业“上中下游之间,甚至上游内部”都可以有生态,比如芯片和算法及产品可以有生态,产品与工程服务也可以有生态,AI算法平台也可以有生态。
 
  聚焦到“上游”看生态,核心已经从镜头及传感器等硬件元器件转变为“芯片及算法”。关于芯片及AI企业造芯片,行业有不同的意见和观点。
 
  有观点认为,如果企业既做算法、又做芯片,是行业混沌、不成熟的表现。 
  有观点认为,算法和芯片密不可分,好的算法呈现与芯片需要密切协调配合。
 


 

  芯片过于复杂,尤其是通用芯片;芯片又貌似简单,很多AI新锐企业纷纷发力芯片。
 
  算法公司做芯片,理由其实很充分。因为算法再,终需要体现在芯片上,有企业提出“算法即芯片”,正是因为AI算法公司设计了牛逼的算法,但绝大多数时候找不到合适的AI芯片支持。
 
  做芯片难。芯片的背后所牵涉到的算法技术、设计能力、数据打磨、供应链支持繁杂而深远,往往是牵一发而动全身。做AI芯片更难:做 AI 算法的人往往不懂芯片,因此当算法想把算法移植到芯片上时,通常需要芯片或硬件厂家的驻厂培训;反之亦然,芯片厂家想针对某个新的算法做优化也需要专门的对接。过于冗长的对接和沟通桥梁,将导致开发导致周期较长,更可能耽误产品上新的佳时期。
 
  如果算法和芯片能够实时沟通、同步优化,将大幅推动AI芯片落地。这时候,一个能够集聚产业链各方力量并实现资源优化配置的产业平台就成为关键。
 


 

  目前,行业中真正能够将AI的五个元素都掌握的企业不多:算法+算力+数据+产品+场景,五个环节中,前四个环节其实是密切配合的,门槛非常高。而场景其实是工程商及集成商的价值所在,通常说的AI企业没有工程化能力,说的是产品。
 
  如果有一个平台能够让算法和芯片实时沟通,能够通过对大量算法模型的测试报告的结果进行统计,算法可以知道自己的算法在卷积类型、操作类型、I/O的时间消耗等,并以此优化模型结构,从而早早地把新模型发展趋势考虑进来,芯片就能确定芯片或工具链在下一版本的优化方向和目标,同时也可实现面向新型深度学习模型的芯片设计与优化,有助于让理论加速比变成实际的加速比。
 
  依图公司一直以算法和工程能力被AI行业所认可。实际上,依图的优势不止是算法及场景落地,依图是国内、世界可能是唯三,可以提供全栈式(AI五元素)的人工智能能力的公司,不管是以人脸识别为代表的视觉,还是语音识别、声纹识别,都处于业内比较高的水平。
 
  今年五月,依图的首颗云端视觉 AI 芯片求索(QuestCore)落地,引起行业广泛关注,求索芯片“发布即商用”打破了很多AI芯片“期货”甚至“PPT”模式。
 
  2019 年世界人工智能大会期间,国家科技部正式宣布将依托依图科技打造「视觉计算国家新一代人工智能开放创新平台」,助力中国芯片设计业和人工智能的结合。
 
  10 月 30 日,依图正式启动「AI 芯片视觉计算创新平台开放计划」,开放从底层计算硬件、算法、数据库、应用层等一整套行业应用架构。它大的特点是「分层解耦、开放融合」,产业各方都可以参与进去根据需求模块化使用,快速进行智能化行业应用开发。
 


 

  从芯片到平台,成为AI 基础设施提供商和 AI 解决方案提供商,这是依图的产业定位。依图将通过开放的产品平台和生态社区,发挥“连接器”作用,依托视觉计算国家开放创新平台,打造算法及芯片的共赢生态,从而赋能更多人工智能应用广泛、快速落地。
 
  AI 芯片视觉计算创新平台开放微观理解是为了解决上述AI 算法和芯片对接难的难题,宏观理解,依图希望把所掌握的包括芯片、算法、成熟行业落地的经验,分享给行业合作伙伴,希望行业上下游企业一起把整个AI行业给做大做强。
 
  如图,依图的视觉计算平台主要分为 5 层,从下至上分别是:视觉计算硬件层、解析计算层、视图信息层、大规模特征索引层和业务应用层。
 


 

  具体而言,在底层硬件层,依图提供芯片、模组、服务器(盒子)算力资源,如果有自身的算法,依图还提供迁移工具,帮助算法加速他们的算法和求索芯片的优化对接过程。
 
  在解析计算层,依图提供车辆识别、X 光机、视频结构化等前沿的视觉算法。
 
  在视图信息层,依图提供以图搜图、级联汇聚、数据存储和管理,支持行业视图库标准与分布式级联,解决超大规模结构化数据和突破读写问题,帮助商家快速开发部署。
 
  大规模特征索引层是实现从感知智能到认知智能的关键一层,目前可支持 10 万路视频在 1 年内数据的秒级检索,进行各种关系的关联计算。它是行业大数据的视觉计算入口,可以开发深度行业应用。
 
  上是业务应用层。行业经常提到AI的三座大山,算力、算法和数据,这是AI行业早期的大山,目前及未来真正的大山是行业知识和行业实践。而依图在智能城市有深度布局,已经积累下 110 个成熟行业应用,可以直接使用,也可以在此基础上开发行业场景应用。
 
  视觉计算平台大的特点在于「分层解耦、开放融合」。
 
  「分层解耦」,就是将平台算法层与硬件层、数据层、应用层各层之间都实现解耦,每一层都能通过接口对外提供能力,这种“可插拔式”的分层架构,让各方都能参与进来按需使用,大幅降低 AI 开发时间和门槛。
 


 

  「开放融合」,是指平台的开放性、包容性,第三方算法可以跑在依图芯片上,同时依图的算法也支持合作伙伴的芯片。开放能够实现算力、算法、产品的有效对接,促进创新,避免规模化造成的垄断。
 
  小结:各个企业都在讲“平台及生态”,有企业认为AI算法开放平台-让天下没有难做的AI,赋能的是整个生态圈;有企业认为平台是百花齐放的,唯有开放才能更好的赋能细分的行业生态圈;而依图的“视觉计算开放平台”,重点在于“芯片、算法和产品”的优化连接,这是依图的优势。未来的依图主分两条线,一条是AI的基础设施提供商:做端到端的,特别是从底层的架构开始,要进入芯片层面的融合算法的设计。另外一条是AI解决方案提供商,通过AI能够真正深度赋能不同的行业。今时今日,“X+AI”创业所需要的经济门槛越来越低,但是创新所需要的精神门槛、勇气从来没有降低过,行业需要保持这种比较有勇气的方式,有开拓的精神去做创新。

上一篇:盘点双十一热门单品 看安防市场民用趋势

下一篇:科学养宠深入人心 智能宠物喂食器或成“香饽饽”

相关资讯:

首页|导航|登录|关于本站|联系我们