2016关注语音识别 人工智能&大数据等领域
- 来源:智能视频技术联盟
- 2016/2/16 14:46:4015991
2016关注语音识别 人工智能&大数据等领域
语音识别
语音识别技术虽然起源于1952年,但真正进入消费市场已经是上世纪90年代的事了。目前语音识别有两大发展方向,一个是纯机械指令,基于产品定位而设计命令词组,作为的辅助工具存在;一个是智能化理解语境,与人进行互动交流,并承担部分处理工作。后者可能是语音识别未来的发展方向,但实际应用中两者并不冲突。简单的机械指令让工作更为纯粹,没必要做多余的计算动作。而很多智能设备将语音作为“解放双手”的第三类互动形态,就需要对人的语境进行“理解”,相信很多朋友都玩过siri、GoogleNow、Cortana,也同时体验过这些语音助手“会错意”的卖萌行为。老罗在去年坚果发布会上曾说所有语音助手都是“伪”智能,虽然有点以偏概全,但目前语音对语境的识别确实还不够智能,远不如机械指令效率。不过这些问题随着深度学习等AI领域技术的崛起将逐渐克服。
图像识别
图像识别从以图搜图到明星、物体识别,再到场景识别,甚至现在延伸到了视频领域,给行业带来了太多惊喜。现在图片内容的价值已经超越图片本身,并且建立了从图片到电商的商业模式。图像识别一般针对画面中一个对象做识别,比如大众熟知的人脸、明星脸等识别技术已经很成熟了,基本识别率达到90%以上。近年、服饰品牌的同款识别和风景识别大行其道,为旅游行业和服饰行业创造了商机。图像识别在视频领域涌现出强大的应用前景,新兴起的互动视频技术video++已经实现视频中的人脸和服饰同款的识别,基于图像识别技术发展视频中的商业场景。另外瞳孔识别的研究已经提上日程,不久的将来,科幻片中所见即所得的情景不再是幻想。
深度学习
没有基础的技术实力,语音和图像是好玩不起来的,而和低级的门槛就在深度学习的研究上。国内虽然起步较晚,好歹在去年赶上了这波风潮,包括图像识别和语音识别在内,还有自动驾驶、无人机、环境还原、机器人等项目,前段时间很火的谷歌AlphaGo在围棋领域击败了欧洲二段,也是归功于深度学习的算法支持。可以说跟用户有交互行为的产品,都开始进行深度学习AI的研究了。通过神经网络的训练学习,语音识别变得更聪明,实现快速的识别动作以外,还能对下一句的语境情绪进行预测,模拟真人对话。另外,语音识别大量运用在翻译市场,争取未来十年内在专业翻译领域完全替代人类。图像识别过去大多是建库识别,深度学习释放了图像识别的识别领域,把识别对象的年龄变化记忆下来,实现动态、多角度、不同光照变化下的识别。
应用领域
安防市场是要求语音和图像识别技术双高的行业之一,未来将不局限在解锁开门等基础功能,运用图像识别技术,实现对象动作识别,根据威胁等级进行危险性判断,提前发出警报或报警。语音识别的运用领域将超化发展,近年来语音识别速度屡创新高,在翻译市场、智能硬件助手、AI辅助,行车帮助等等方面实现价值。而娱乐领域的玩法变得多元化,像近大热的faceu,运用了脸部识别跟踪技术,让普通的自拍可以DIY。还有video++视频开放平台,可以对视频中的明星、衣服同款进行识别搜索,打开了视频到电商的入口。乘着去年SaaS的风口,国内外陆续出现了语音识别、图像识别的技术开放平台,从专业到普通领域,语音识别和图像识别将在2016年做到技术全覆盖。
大数据
数据收集是一个从被动到主动的过程,语音识别从接受指令变成了对指令使用频率的分析,进而形成用户的习惯图表。图像识别亦然,针对用户的识别频率,分析出用户的兴趣画像,这将给予广告主带来广告推送的商机。
结语
2016年将是“好玩”的一年,语音识别和图像识别让我们跟智能设备之间的交互更自然,基于大数据的技术支持,让识别变得主动而聪明。语音识别和图像识别将走进普通人的世界,让我们的生活更生动。