大数据拥有三大特性 是城市安防重要角色
- 来源:中国大数据
- 2015/6/1 18:11:152298
了解大数据才能有效运用
相较于传统数据,大数据至少具有三个差异极大的特性。首先是数据量(Volume),如果换算成数位数据单位,基本单位通常已经是TB、PB等级,不但要考量收集及储存成本,如何迅速传递这么庞大的数据,也是大数据应用必须思考的重点。
其次是时效性(Velocity),即使是这么大的数据量,仍然要在短的时间内产生分析结果,如传统的年报统计,往往是在今年收集去年的数据,却在隔年才出版,旷日废时的结果,往往会让数据分析结果失真。
后也是大的差别,就是数据的多样性(Variety),传统的数据通常有明确的结构性,选项也比较少,如年龄、性别、等级等,但大数据可能会有各种形式,包括文字、影音、图像、网页等,不但没有明显的结构,而且大数据还常常出现形式交错的现象,如Youtube上的影片除了有点击数外,同时还有留言讨论。
由此可知,传统的数据收集方式,显然已经不能满足城市安防对于大数据的需求,所幸在物联网(Internet of Things;IoT)、云端运算及4G无线宽频等技术的发展下,要取得物与物、物与人、人与人的互联互通数据,技术上已不是问题,但必须得先迅速建构起收集、传递及储存大数据的基础建设,才有可能建立全面感知的能力,成为城市安防决策的佳后盾。
但只是从感知层获取资讯是不够的,因为想要做好大数据深度分析,就必须要有能力针对复杂且开放式的问题寻找答案,并藉由视觉化分析工具,透过连续性的筛选和抽象化,才能洞悉重要资讯。然而大数据具有的超大量半结构化/非结构化数据的特性,往往会造成传统关联式数据库管理系统(RDBMS)的运作瓶颈,必须要导入全新的大数据分析工具,方能真正灵活运用大数据。
此外,大数据的价值既然远超过传统数据,大数据的真实、安全及稳定性,就必须加以重视。尤其是现在的网路应用*,举凡机场、银行、捷运、车站、水电油气供应机制等,都可能被*入侵,加上政府为了能让掌握的数据更有价值,必须要采取公开透明的数据使用机制,当公共事业的数据开放愈多,可能被入侵的机会也愈高,因此想要利用大数据来解决城市安防的问题,首先就得先做好大数据的保护,因此资安技术的导入及专业人员的配置,不能轻忽。
大数据对城市公共卫生及治安的帮助
目前已有许多欧美城市开始藉由搜集及分析大量数据、预知可能出现的危机,进而作为城市安防的参考。如纽约的康乃尔大学威尔医学院(Weill Cornell Medical College)计算与系统生物医学助理教授ChristopherE.Mason的研究团队,花了18个月的时间在纽约400多个地铁站的车厢、楼梯扶手、座椅、灯杆、垃圾桶等地方搜集样本,总共发现15,152种微生物,其中来自于人类的DNA只占0.2%,将近一半的样本是人类未知的有机生物,27%是活性且具有抗生素抗药性的细菌,所幸其中仅有12%会让人生病。
这项名为PhthoMap的研究计划,还透过华尔街日报网站提供互动地图,让使用者可以用来观看特定车站的研究成果,如收集的样本来源、微生物来源比例、细菌种类与说明等,也可利用搜寻细菌的种类,了解那些车站有这些细菌的存在,等于也展示了公卫数据开放使用的过程。
有趣的是,在研究过程中也发现在某些地铁站找到的DNA,与其周围的人口状况相符合,这些都是过去从来没有想过的资讯,未来若能将以分门别类,并且深入研究,对于城市公共卫生的防护工作,将会有莫大的助益。
洛杉矶警局则是导入预测性警务软件(PredPol),用来预测可能发生*情况的地点。据PredPol(名称取自:预测监控Predictive Policing)团队指出,该公司先是搜集过去10年的公开*统计数据,以及从大量的新闻中搜集*的发生状况及时间,可预测的*行为除了自杀外,还包括枪杀、闯空门、窃盗、窃车等,再根据前述数据中的*行为模式,开发出独特的运算系统,再将*机率高甚至下一次可能发生*情况的区域,于地图上标示出一块块500平方英尺的区域,供警察参考,就是典型的将传统数据变成大数据加以运用的范例。
事实上,许多城市的治安单位早已拥有累积数十年的*记录数据档,甚至早己针对*可能性较高的区域或场所加强巡逻。但PredPol利用大数据分析技术,从容易滋养*事件的场所(如曾经发生斗殴事件的酒吧)、多次受害地区(如屡遭窃贼闯空门的社区)及受害地区的邻近地区,计算出10至20个有可能发生*的地点。PredPol宣称,警察只要在地图标明的区域,只需要花过去巡逻时间的5%至15%,就能够阻止更多*活动。
目前全美共有将近60间警局使用Predpol,其中规模大的是洛杉矶警局和亚特兰大警局。其中加州Santa Cruz闯空门的窃盗案在系统建置年就下降了11%、抢劫案更减少了27%。洛杉矶Foothill区在2011年导入PredPol后,4个月后的*率就降低了13%,反观没有导入PredPol的区域,还微幅增加了0.4%。
在2012年一项针对美国近200所警局的研究指出,有70%的警局计画在未来2至5年开始或增加使用类似PredPol的预测性警务技术,包括IBM、Palantir及Motorola也开始涉足相关领域。
虽然将大数据分析技术应用在*治安方面,还不是的准确,经验丰富的警察可能也不见得需要预测性警务技术,但对于新进的警务人员而言,预测性警务技术可以帮助他们及早进入状况,尤其在城市预算吃紧之际,人力又相对缺乏的情况下,运用大数据显然可以提升城市安防的工作效率。
更多数据关联产生更多的价值
城市安防建设至今,影像监控的重要性也日渐提升,但庞大的影像数据要如何分析,却也成为城市治理者的一大难题。所幸大数据技术,正可以针对影像这种非结构性数据加以分析,让视讯监控数据得以有效利用。
大数据可说是智慧城市运作的基础,除了城市安防,其他如智慧交通、智慧医疗等应用,也都需要以大数据为基础,而这些不同类型的数据产生更多的关联,自然也需要更深入的数据分析能力,如智慧交通与智慧安防相结合,可以指引警消人员在短的时间内赶到事故现场,更可看出大数据在城市安防的应用潜力。